Abstract:
An image forming apparatus includes a image forming unit; an image bearing member having a surface to bear a toner image and a test pattern; the surface having a first time-surface positioned identical to the test pattern, an integer multiple of revolutions upstream or downstream from the test pattern in a surface movement direction, and a second time-surface positioned different from the test pattern, shorter than one revolution upstream or downstream from the test pattern; a reflection light detector to detect the amount of light reflected from the test pattern and the first and second time-surfaces of the image bearing member; and a controller to control the image forming unit based on the detection result and determine whether to execute a first-surface control to detect at least the first time-surface or a second-surface control to detect only the second time-surface based on use condition of the image forming apparatus.
Abstract:
An image forming apparatus includes a controller configured to control a toner-image forming device to form a toner patch; and a detector configured to detect the toner patch on the image carrier. During a non-printing period, the controller causes a toner-image forming device to form toner patches, causes the detector to detect densities of the toner patches, and adjusts an image-forming condition of the toner-image forming device based on detected densities. During a printing period, the controller causes the toner-image forming device to form an output image in an image area and form fewer toner patches in a non-image area, causes the detector to detect densities of the fewer toner patches, and adjusts the image-forming condition of the toner-image forming device based on detected densities. The fewer toner patches are selected from and fewer than the plurality of toner patches formed during the non-printing period.
Abstract:
In an image forming apparatus, a processor performs: a solid density stabilization of adjusting, in accordance with detected toner adhesion amounts of solid toner images of solid tone patterns, a condition to form solid images with respective target image densities; a misregistration reduction of adjusting, in accordance with detection timing of position detection toner images of misregistration detection patterns, a condition to reduce misregistration of toner images; and a halftone density stabilization of adjusting, in accordance with detected toner adhesion amounts of area coverage modulation toner images, a condition to form halftone images with respective target image densities. The processor continuously performs the solid density stabilization and the misregistration reduction, and starts the halftone density stabilization when the solid density stabilization is completed and the misregistration reduction is not completed, to concurrently perform a step of the misregistration reduction and at least a step of the halftone density stabilization.
Abstract:
An image forming apparatus includes a image forming unit; an image bearing member having a surface to bear a toner image and a test pattern; the surface having a first time-surface positioned identical to the test pattern, an integer multiple of revolutions upstream or downstream from the test pattern in a surface movement direction, and a second time-surface positioned different from the test pattern, shorter than one revolution upstream or downstream from the test pattern; a reflection light detector to detect the amount of light reflected from the test pattern and the first and second time-surfaces of the image bearing member; and a controller to control the image forming unit based on the detection result and determine whether to execute a first-surface control to detect at least the first time-surface or a second-surface control to detect only the second time-surface based on use condition of the image forming apparatus.
Abstract:
An optical sensor includes: a light-emitting unit; a light-receiving unit that receives light radiated from the light-emitting unit and reflected from a detection target and that outputs an output value in response to the light received; and a correcting unit that corrects the output value of the light-receiving unit when receiving the light reflected from the detection target based on the output value of the light-receiving unit obtained by irradiating a detection area of the optical sensor with light without any light reflective objects being present in the detection area.
Abstract:
An image forming apparatus includes an image forming unit configured to form a plurality of toner images on an image carrier, an optical detector configured to detect reflection light from the toner image, and dedicated to detect infrared rays and near-infrared rays, and a controller configured to perform a predetermined control using a detection results of the optical detector. Gradation pattern that is comprised of a plurality of toner patches formed in the image forming unit with an image forming condition to have different adhesive amounts, and is formed of at least two colors, and detection values detected by the optical detector are used for the predetermined control.
Abstract:
An image forming apparatus, which comprises a toner density detection device for detecting the density of a toner inside a developing device, acquires the number of pixels from inputted image information, calculates the toner replenishment amount from the toner density detection value and the information on the pixels, and thereby performs replenishment control so that excessive replenishment or insufficient replenishment of the toner is not caused. The upper limit value of the amount of toner to be replenished at once to the developing device is changed in accordance with the amount of information on an input image such as the image area, pixels of the input image.
Abstract:
An image forming apparatus includes at least one image bearing member, an intermediate transfer member, a secondary transfer member, and at least one optical sensor. In the image forming apparatus, it is determined that output values of the respective amounts of toner detected by the at least one optical sensor are affected by an impact caused due to a separation of the secondary transfer member from the intermediate transfer member and the output values are ignored as image adjustment input information, when the secondary transfer member separates from the intermediate transfer member during any of writing, developing, and transferring the plurality of image adjustment patterns, if the output values fall outside a given range and an interval between the output values of adjacent image bearing members is substantially equal to a distance between the two adjacent image bearing members for the primary transfer.
Abstract:
An image forming apparatus is configured that a developing unit develops a latent image with a toner, which is controlled by a toner-supply control unit based on a deference between a toner-density of the toner that is supplied to the developing unit and a reference-value. A reference-value determining unit determines the reference-value. A condition determining unit determines whether a predetermined condition is satisfied. The reference-value determining unit updates the reference-value with a different reference-value when the condition determining unit determines that the predetermined condition is satisfied.
Abstract:
A device for detecting image information includes an intermediate transfer member configured to hold a pattern image; a detecting unit configured to optically detect the pattern image; a secondary transfer unit configured to contact with and separate from the intermediate transfer member; and a control unit that controls the secondary transfer unit in such a manner that the secondary transfer unit does not contact the intermediate transfer member while the detecting unit is detecting the pattern image, and that controls the secondary transfer unit in such a manner that the secondary transfer unit contacts the intermediate transfer member after the detecting unit finishes detection of the pattern image.