摘要:
A fuel cell system is disclosed comprising a plurality of fuel cell modules including a sealed planar fuel cell stack, the stack including internal manifold channels for transport of fuel and air to fuel cells within the stack and transport of tail gas and spent air away from fuel cells within the stack. Each of the fuel cell stacks is mounted on a stack footprint area of a top member of a base manifold. The base manifolds are configured to allow for interconnection of a number of fuel cell stack modules to provide a fuel cell system capable of producing power outputs that otherwise would have required large surface area cells or stack with a large number of cells.
摘要:
A multi-stack fuel cell system is disclosed where multiple fuel cell stacks can be efficiently connected together. The fuel cell system includes a plurality of fuel cell modules include a sealed planar fuel cell stack that has internal manifold channels for transport of fuel and air to fuel cells within the stack and transport of tail gas and spent air away from fuel cells within the stack. Each of the fuel cell stacks is mounted on a base manifold, and the base manifold has side openings in fluid communication with the stack internal manifold channels. The side openings on the base manifold are configured so that the modules can be efficiently connected together.
摘要:
An improved SOFC repeating fuel cell unit comprising three flat plates and a cell retainer. The three flat plates are metallurgically joined (brazed or laser welded) into a subassembly to which is added the fuel cell and cell retainer (which may also be joined as a second subassembly). Each flat plate performs a specific set of functions and can be optimized for those functions. Since the plates are flat and designed to overlap in loaded areas, the fuel cell unit is not prone to dimensional collapse which eliminates the internal reinforcements of the prior art design. The cell retainer is formed to provide a self-locating and locking feature for the fuel cell and decouples thermal stresses from the thin ceramic fuel cell.
摘要:
A textured surface is formed on at least one of a fuel cell mounting plate or fuel cell subassembly to define a joint spacing between these two components. In a preferred embodiment, the textured surface comprises a plurality of dimples coined or otherwise formed in the metal mounting plate. The joint spacing improves the manufacturing and assembly process of the fuel cell cassettes through precise application and control of the brazing process which improves the braze joint strength while reducing material cost.
摘要:
An electrical interconnect for a solid-oxide fuel cell stack assembly, including a novel sintering paste and an improved manufacturing process for an anode and cathode electrical contacts is disclosed. On the anode side, the paste contains a metallic oxide such as NiO, and an amount of sacrificial pore-forming particles, such as carbon particles or polymer spheres, which are vaporized during sintering of the paste, resulting in a very porous connection having good electrical conductivity and good adhesion. A preferred level of pore-former in the paste is about 40 volume percent. On the cathode side, the paste contains a noble metal such as for example, gold, platinum, palladium or rhodium, and an amount of the sacrificial pore-forming particles. The paste may be applied to the surfaces in a grid pattern or, because the resulting contact is porous after sintering, it may be applied as a continuous layer.
摘要:
A modular fuel cell cassette for use in assembling a fuel cell stack comprising a metal separator plate and a metal cell-mounting plate joined at their edges to form a hollow cassette. A fuel cell subassembly is attached to the mounting plate and extends through an opening in the mounting plate. The plates include openings to form chimney manifolds for supply and exhaust of fuel gas to the anode and air to the cathode. A conductive interconnect element extends from the fuel cell subassembly to make contact with the next cassette in a stack. The anode openings in the mounting plate and separator plate are separated by spacer rings such that the cassette is incompressible. A fuel cell stack comprises a plurality of cassettes, the mounting plate of one cassette being attached to, and insulated from, the separator plate of the next-adjacent cassette by a dielectric seal surrounding the interconnect.
摘要:
A fuel cell module having four sheet metal parts stamped from flat stock. The parts do not require any forming operations such as folding or dishing. Each part may have a different thickness to suit its function. The first part is a cell mounting frame for receiving and supporting a PEN fuel cell element. The second part is a cathode spacer, the thickness of the spacer determining the height of the cathode air flow field. The third part is an anode spacer, the thickness of spacer determining the height of the anode fuel flow field. The fourth part is a separator plate for separating the anode gas flow in one cell from the cathode air flow in an adjacent cell in a fuel cell stack. The four plates are joined by welding or brazing and may be assembled in any order or combination which suits the assembly process. Any desired number of modules may be stacked together to form a fuel cell stack.
摘要:
A minimum joint thickness can be assured by incorporating beads or particles having a diameter corresponding to the joint thickness desired and which are infusible at the brazing temperature. Preferably such particles are formed of high-melting metals, metal oxides, ceramics, or cermets and are mixed into the alloy paste prior to fusing. In a preferred embodiment, the particle-containing paste is mixed with a non-flux carrier to facilitate application to the elements to be brazed. Exemplary application methods may include painting, rolling, screening, or extrusion dispensing. Brazing alloys in accordance with the invention are useful in bonding ceramics to ceramics, ceramics to metals, and metals to metals.
摘要:
In a solid-oxide fuel cell system, the fuel cell tail gas contains significant residual amounts of combustibles which are burned in a combustor with spent cathode air to reduce system emissions and to reclaim chemical energy in the form of heat, the hot exhaust being used to pre-heat air entering the fuel cell system. The tail gas combustibles content can vary widely as can the combustion temperature. When the temperature becomes unacceptably low, a control valve in the spent cathode air return is adjusted to divert a portion of the air around the combustor, thus enriching the fuel/air mixture and causing the combustion temperature to increase. When the temperature becomes unacceptably high, a control valve in the combustor fresh air supply is adjusted to provide more air, thus causing the mixture to become leaner and the combustion temperature to decrease.
摘要:
A solid-oxide fuel cell system including an integrated reforming unit comprising a hydrocarbon fuel reformer; an integral tail gas and cathode air combustor and reformer heat exchanger; a fuel pre-heater and fuel injector cooler; a fuel injector and fuel/air mixer and vaporizer; a reforming air pre-heating heat exchanger; a reforming air temperature control valve and means; and a pre-reformer start-up combustor. The integration of a plate reformer, tail gas combustor, and combustor gas heat exchanger allows for efficient operation modes of the reformer, both endothermic and exothermic as desired. The combustor gas heat exchanger aids in temperature regulation of the reformer and reduces significant thermal gradients in the unit.