Abstract:
Provided is a hydrogen separation membrane module, and more particularly, a hydrogen separation membrane module having a mixing part capable of increasing hydrogen purification efficiency by maximizing a mixing effect and a dispersion effect of a mixture gas supplied to the hydrogen separation membrane using the mixing part provided with a microchannel to supply the mixture gas to the hydrogen separation membrane.
Abstract:
The present invention relates to a hydrogen separation membrane which coats granular ceramic onto the surface of a porous metal support and which coats a hydrogen permeation metal thereon so as to inhibit diffusion between the support and a hydrogen separation layer, and to a method for manufacturing same. As a result, the metal support can be modularized with ease, the hydrogen permeation layer can be made thinner to increase the amount of hydrogen permeation, the use of a separation material can be minimized, and the hydrogen separation membrane can have higher competitiveness.
Abstract:
The present invention relates to a hydrogen separation membrane which coats granular ceramic onto the surface of a porous metal support and which coats a hydrogen permeation metal thereon so as to inhibit diffusion between the support and a hydrogen separation layer, and to a method for manufacturing same. As a result, the metal support can be modularized with ease, the hydrogen permeation layer can be made thinner to increase the amount of hydrogen permeation, the use of a separation material can be minimized, and the hydrogen separation membrane can have higher competitiveness.