Abstract:
The present invention relates to the method for manufacturing high quality graphene by heating carbon-based self-assembly monolayers, comprising the steps of: forming carbon source layers which are convertible into the graphene layer on the substrate; forming a metal catalyst layer on the carbon source layer; converting the carbon source layers into the graphene layer by heating the first part of the substrate using a local heating source, wherein the carbon source layers and the metal catalyst layers are formed; converting the carbon source layers into graphene by moving the local heating source and then heating the second part which is different from the first part; and removing the metal catalyst layer. The present invention also provides a substrate comprising a graphene layer manufactured by the above method and provides applications in semiconductor devices and electronic materials using the substrate.
Abstract:
A simple and easy method for fabricating graphene quantum dots with uniformed size and high quality of emission property comprises steps of, mixing graphite powders with metallic hydrate salts, forming an intercalation compound of graphite wherein metal ions are inserted by heating the mixed solution, and removing the metal ions from the intercalation compound of graphite. The graphene quantum dots is applicable to the development of electronic products in next generation such as display devices, recording devices, various sensors and nanocomputers and is applicable to biological and medicinal field as well.