Abstract:
Disclosed are a gas sensor member, a gas sensor using the same, and manufacturing methods thereof, and specifically, a gas sensor member using a one-dimensional porous metal oxide nanotube composite material having a double average pore distribution in which mesopores (0.1 nm to 50 nm) and macropores (50 nm to 300 nm) are simultaneously formed on the surface of a nanotube through decomposition of a spherical polymer sacrificial template and continuous crystallization and diffusion of a metal oxide and a nanoparticle catalyst embedded in an apoferritin is uniformly loaded in the inside and on the outer wall and inner wall of a one-dimensional metal oxide nanotube through a high-temperature heat treatment, a gas sensor using the same, and manufacturing methods thereof are disclosed.
Abstract:
Disclosed are a gas sensor member, a gas sensor using the same, and manufacturing methods thereof, and specifically, a gas sensor member using a one-dimensional porous metal oxide nanotube composite material having a double average pore distribution in which mesopores (0.1 nm to 50 nm) and macropores (50 nm to 300 nm) are simultaneously formed on the surface of a nanotube through decomposition of a spherical polymer sacrificial template and continuous crystallization and diffusion of a metal oxide and a nanoparticle catalyst embedded in an apoferritin is uniformly loaded in the inside and on the outer wall and inner wall of a one-dimensional metal oxide nanotube through a high-temperature heat treatment, a gas sensor using the same, and manufacturing methods thereof are disclosed.
Abstract:
Disclosed are a gas sensor member, a gas sensor using the same, and manufacturing methods thereof, and specifically, a gas sensor member using a one-dimensional porous metal oxide nanotube composite material having a double average pore distribution in which mesopores (0.1 nm to 50 nm) and macropores (50 nm to 300 nm) are simultaneously formed on the surface of a nanotube through decomposition of a spherical polymer sacrificial template and continuous crystallization and diffusion of a metal oxide and a nanoparticle catalyst embedded in an apoferritin is uniformly loaded in the inside and on the outer wall and inner wall of a one-dimensional metal oxide nanotube through a high-temperature heat treatment, a gas sensor using the same, and manufacturing methods thereof are disclosed.