DETECTOR FOR A DARK-FIELD, PHASE-CONTRAST AND ATTENUATION INTERFEROMETRIC IMAGING SYSTEM

    公开(公告)号:US20220338827A1

    公开(公告)日:2022-10-27

    申请号:US17765520

    申请日:2020-09-16

    IPC分类号: A61B6/00

    摘要: The present invention relates to a detector (10) for a dark-field and/or phase-contrast interferometric imaging system. The detector comprises a plurality of pixels (50), a plurality of first detector arrays (20), pixel a plurality of second detector arrays (30), and a processing unit (40). The plurality of pixels are arranged in a two-dimensional pattern. Each pixel comprises a first detector array and a second detector array. Each first detector array comprises a plurality of fingers (22). Each second detector array comprises a plurality of fingers (32). For each pixel the fingers of the first detector array are interleaved alternately with the fingers of the second detector array. For each pixel interaction with an incident X-ray photon can lead to charge generation in at least one finger of the first detector array of that pixel and can lead to charge generation in at least one finger of the second detector array of that pixel. For each pixel the first detector array is configured to detect a cumulative charge associated with the plurality of fingers of the first detector array and the second detector array is configured to detect a cumulative charge associated with the plurality of fingers of the second detector array. For each pixel the processing unit is configured to assign an X-ray interaction event to either the first detector array or the second detector array on the basis of the detector array that has the highest cumulative charge.

    ANALYZING GRID FOR PHASE CONTRAST IMAGING AND/OR DARK-FIELD IMAGING

    公开(公告)号:US20190304616A1

    公开(公告)日:2019-10-03

    申请号:US16307675

    申请日:2017-06-08

    IPC分类号: G21K1/02 G01N23/041 A61B6/00

    摘要: The invention relates to an analyzing grid for phase contrast imaging and/or dark-field imaging, a detector arrangement for phase contrast imaging and/or dark-field imaging comprising such analyzing grid, an X-ray imaging system comprising such detector arrangement, a method for manufacturing such analyzing grid, a computer program element for controlling such analyzing grid or detector arrangement for performing such method and a computer readable medium having stored such computer program element. The analyzing grid comprises a number of X-ray converting gratings. The X-ray converting gratings are configured to convert incident X-ray radiation into light or charge. The number of X-ray converting gratings comprises at least a first X-ray converting grating and a second X-ray converting grating. Further, the X-ray converting gratings each comprise an array of grating bars, wherein the grating bars within each X-ray converting grating are arranged mutually displaced from each other in a direction perpendicular to the incident X-ray radiation by a specific displacement pitch. Further, the grating bars of the first X-ray converting grating are arranged mutually displaced from the grating bars of the second X-ray converting grating in the direction perpendicular to the incident X-ray radiation by the displacement pitch divided by the number of X-ray converting gratings.

    COMBINED X-RAY AND NUCLEAR IMAGING
    4.
    发明申请

    公开(公告)号:US20190090827A1

    公开(公告)日:2019-03-28

    申请号:US16082986

    申请日:2017-02-28

    摘要: The invention relates to a combined imaging detector (110) for the detection of x-ray and gamma quanta. The combined imaging detector (110) is adapted for simultaneous detection of gamma and x-ray quanta. The combined imaging detector (110) includes an x-ray anti-scatter grid (111), a layer of x-ray scintillator elements (112), a first photodetector array (113), a layer of gamma scintillator elements (114), and a second photodetector array (115) that are arranged in a stacked configuration along a radiation-receiving direction (116). The x-ray anti-scatter grid (111) comprises a plurality of septa (117A, B, C) that define a plurality of apertures (118) which are configured to collimate both x-ray quanta and gamma quanta received from the radiation receiving direction (116) such that received gamma quanta are collimated only by the x-ray anti-scatter grid (111). The use of the x-ray anti-scatter grid as a collimator for received gamma quanta results in a significantly lighter combined imaging detector.