Die Screening Using Inline Defect Information

    公开(公告)号:US20200312778A1

    公开(公告)日:2020-10-01

    申请号:US16439465

    申请日:2019-06-12

    Abstract: Embodiments herein include methods, systems, and apparatuses for die screening using inline defect information. Such embodiments may include receiving a plurality of defects, receiving wafersort electrical data for a plurality of dies, classifying each of the defects as a defect-of-interest or nuisance, determining a defect-of-interest confidence for each of the defects-of-interest, determining a die return index for each of the dies containing at least one of the defects-of-interest, determining a die return index cutline, and generating an inking map. Each of the defects may be associated with a die in the plurality of dies. Each of the dies may be tagged as passing a wafersort electrical test or failing the wafersort electrical test. Classifying each of the defects as a defect-of-interest or nuisance may be accomplished using a defect classification model, which may include machine learning. The inking map may be electronically communicated to an inking system.

    Die screening using inline defect information

    公开(公告)号:US10930597B2

    公开(公告)日:2021-02-23

    申请号:US16439465

    申请日:2019-06-12

    Abstract: Embodiments herein include methods, systems, and apparatuses for die screening using inline defect information. Such embodiments may include receiving a plurality of defects, receiving wafersort electrical data for a plurality of dies, classifying each of the defects as a defect-of-interest or nuisance, determining a defect-of-interest confidence for each of the defects-of-interest, determining a die return index for each of the dies containing at least one of the defects-of-interest, determining a die return index cutline, and generating an inking map. Each of the defects may be associated with a die in the plurality of dies. Each of the dies may be tagged as passing a wafersort electrical test or failing the wafersort electrical test. Classifying each of the defects as a defect-of-interest or nuisance may be accomplished using a defect classification model, which may include machine learning. The inking map may be electronically communicated to an inking system.

Patent Agency Ranking