摘要:
The catalytic composition for the electrochemical reduction of carbon dioxide is a metal oxide supported by multi-walled carbon nanotubes. The metal oxide may be nickel oxide (NiO) or tin dioxide (SnO2). The metal oxides form 20 wt % of the catalyst. In order to make the catalysts, a metal oxide precursor is first dissolved in deionized water to form a metal oxide precursor solution. The metal oxide precursor solution is then sonicated and the solution is impregnated in a support material composed of multi-walled carbon nanotubes to form a slurry. The slurry is then sonicated to form a homogeneous solid solution. Solids are removed from the homogeneous solid solution and dried in an oven for about 24 hours at a temperature of about 110° C. Drying is then followed by calcination in a tubular furnace under an argon atmosphere for about three hours at a temperature of 450° C.
摘要:
A method for quantitative determination of nonisothermal thermooxidative degradation effects of a polyolefin material containing a residual catalyst. The method includes determining a first thermooxidative degradation by obtaining a thermogravimetric analysis spectrum of polyolefin, and then modifying the first thermooxidative degradation based on a structure of the residual catalyst to obtain final thermooxidative degradation properties of the polyolefin.
摘要:
The catalytic composition for the electrochemical reduction of carbon dioxide is a metal oxide supported by multi-walled carbon nanotubes. The metal oxide may be nickel oxide (NiO) or tin dioxide (SnO2). The metal oxides form 20 wt % of the catalyst. In order to make the catalysts, a metal oxide precursor is first dissolved in deionized water to form a metal oxide precursor solution. The metal oxide precursor solution is then sonicated and the solution is impregnated in a support material composed of multi-walled carbon nanotubes to form a slurry. The slurry is then sonicated to form a homogeneous solid solution. Solids are removed from the homogeneous solid solution and dried in an oven for about 24 hours at a temperature of about 110° C. Drying is then followed by calcination in a tubular furnace under an argon atmosphere for about three hours at a temperature of 450° C.
摘要:
Fluidizable catalysts for the gas phase oxygen-free oxidative cracking of alkanes, such as hexane, to one or more olefins, such as ethylene, propylene, and/or butylene. The catalysts comprise 1-15% by weight per total catalyst weight of one or more vanadium oxides (VOx), such as V2O5. The catalysts are disposed on an alumina support that is modified with cerium to influence catalyst acidity and characteristics of lattice oxygen at the catalyst surface. Various methods of preparing and characterizing the catalyst as well as methods for the gas phase oxygen free oxidative cracking of alkanes, such as hexane, to one or more olefins, such as ethylene, propylene, and/or butylene with improved alkane conversion and olefins product selectivity are also disclosed.
摘要:
An integrated chemical looping combustion (CLC) electrical power generation system and method for diesel fuel combining four primary units including: gasification of diesel to ensure complete conversion of fuel, chemical looping combustion with supported nickel-based oxygen carrier on alumina, gas turbine-based power generation and steam turbine-based power generation is described. An external combustion and a heat recovery steam generator (HRSG) are employed to maximize the efficiency of a gas turbine generator and steam turbine generator. The integrated CLC system provides a clean and efficient diesel fueled power generation plant with high CO2 recovery.
摘要:
Electrocatalysts for the anode electro-oxidation of formic acid in direct formic acid fuel cells (DFAFCs). The Pd-, Pt- or PdPt-based electrocatalysts contain WO3-modified ordered mesoporous carbon (OMC) as support material. Compositions and ratios of Pd:Pt in the electrocatalysts as well as methods of preparing and characterizing the catalysts and the WO3-OMC support material.
摘要:
Fluidizable catalysts for the gas phase oxygen-free oxidative cracking of alkanes, such as hexane, to one or more olefins, such as ethylene, propylene, and/or butylene. The catalysts comprise 1-15% by weight per total catalyst weight of one or more vanadium oxides (VOx), such as V2O5. The catalysts are disposed on an alumina support that is modified with cerium to influence catalyst acidity and characteristics of lattice oxygen at the catalyst surface. Various methods of preparing and characterizing the catalyst as well as methods for the gas phase oxygen free oxidative cracking of alkanes, such as hexane, to one or more olefins, such as ethylene, propylene, and/or butylene with improved alkane conversion and olefins product selectivity are also disclosed.
摘要:
Fluidizable catalysts for the gas phase oxygen-free oxidative cracking of alkanes, such as hexane, to one or more olefins, such as ethylene, propylene, and/or butylene. The catalysts comprise 1-15% by weight per total catalyst weight of one or more vanadium oxides (VOx), such as V2O5. The catalysts are disposed on an alumina support that is modified with cerium to influence catalyst acidity and characteristics of lattice oxygen at the catalyst surface. Various methods of preparing and characterizing the catalyst as well as methods for the gas phase oxygen free oxidative cracking of alkanes, such as hexane, to one or more olefins, such as ethylene, propylene, and/or butylene with improved alkane conversion and olefins product selectivity are also disclosed.
摘要:
Fluidizable catalysts for oxygen-free oxidative dehydrogenation of alkanes to corresponding olefins. The catalysts contain 10-20% (by weight per total catalyst weight) of one or more vanadium oxides as the catalytic material, which are mounted upon an alumina support that is modified with zirconia at alumina/zirconia ratios of 5:1 up to 1:2. Various methods of preparing and characterizing the fluidizable catalysts are also provided.
摘要:
Oxidative dehydrogenation (ODH) of alkanes to alkenes, e.g., propane to propylene, may use solid phase oxygen in VOx based mixed oxide catalysts. Beyond catalysis, the metal oxide species provide lattice oxygen. The catalysts can be prepared by depositing vanadium oxide(s) on θ-Al2O3 mixed with various alkaline earth metal oxide support, e.g., CaO, MgO, BaO, etc. Surface area, acidity, and reduction properties of the catalyst systems can be modified by the support. The catalysts may allow multistage reduction of VOx, indicating different VOx species. Vanadium on θ-Al2O3/CaO can suppress COx species, while vanadium on θ-Al2O3/BaO can yield at least ca. 49% olefins.