Abstract:
A power generation system having a gas turbine engine that utilizes sunlight, includes a compressor configured to compress an air which is a working medium, a solar heater configured to heat the air compressed by the compressor, utilizing sunlight as a heat source, a hydrogen combustor configured to burn the air compressed by the compressor utilizing hydrogen as a fuel, a turbine configured to output a motive power from a high-temperature gas heated by at least one of the solar heater and the hydrogen combustor, a power generator configured to be driven by the turbine, and at least one hydrogen-generating unit configured to generate hydrogen by utilizing an output of the turbine or exhaust heat from the turbine to decompose a water, and supply the hydrogen so generated to the hydrogen combustor.
Abstract:
A combined-type gas turbine engine system is provided which achieves high efficiency by very effectively using exhaust heat from a gas turbine engine. In a gas turbine engine system including: a compressor for compressing a first working medium; a heater for heating the compressed first working medium by an external heat source; a turbine for outputting power from the first working medium; an intermediate cooler provided at the compressor for cooling the first working medium compressed by a low-pressure compression part of the compressor and supplying the first working medium to a high-pressure compression part of the compressor; and an exhaust heat boiler using as a heating medium an exhaust gas from the turbine, a Rankine cycle engine using the intermediate cooler and the exhaust heat boiler as heat sources and a cooling medium of the intermediate cooler as a second working medium.
Abstract:
In a structure for cooling a constituent member of a gas turbine engine using a working gas of the gas turbine engine as a cooling medium, on a wall surface of a passage wall formed from a part of the constituent member and facing a cooling medium passage through which the cooling medium flows, a recess formed on the wall surface of the passage wall and a projection formed on at least a part of a peripheral edge of the recess are provided.
Abstract:
A heat storage mechanism, of a heat exchanger, which does not shorten the service life of the heat exchanger even when a facility using the heat exchanger is intermittently operated and which suppresses a decrease in efficiency at the time of restart of the facility, is provided. The heat storage mechanism for storing heat of a heat exchanger during stop of operation of a facility provided with the heat exchanger includes an outflow prevention unit configured to prevent outflow of an exhaust gas to the outside, which is a heating medium of the heat exchanger, during stop of operation of the facility is provided in an exhaust passage through which the exhaust gas is discharged to the outside.
Abstract:
A hydrogen/oxygen stoichiometric combustion turbine system includes: a high-pressure steam turbine (2); a low-pressure steam turbine (3); and a heater (5) disposed between the high-pressure and low-pressure steam turbines. The heater (5) has a combustion portion (53) in which stoichiometric combustion of hydrogen and oxygen is caused, and a mixing portion (55) configured to mix discharged steam (S4) from the high-pressure steam turbine (2) with combustion gas (R) from the combustion portion (53) and to supply the obtained product to the low-pressure steam turbine (3).
Abstract:
An intake structure of a compressor includes an intake duct forming an intake port opening in a direction away from a central axis of the compressor and a bellmouth forming an annular channel expanding from an inlet of the compressor toward an inner space of the intake duct. The bellmouth includes a plurality of struts connecting an inner casing positioned inside the annular channel and an outer casing positioned outside the annular channel. At least one of a plurality of transverse struts, of the plurality of struts, which are located on both sides of a center plane passing through the central axis of the compressor and the center of the intake port has a trailing edge positioned on a virtual plane passing through the central axis of the compressor and a leading edge positioned on a side of the intake port with respect to the virtual plane.
Abstract:
A gas turbine engine system is provided which achieves high efficiency while using sunlight as a heat source. In a gas turbine engine system including: a compressor configured to compress a first working medium; a heater configured to heat the compressed first working medium by an external heat source; a turbine configured to output power from the first working medium; and an intermediate cooler provided at the compressor and configured to cool the first working medium compressed by a low-pressure compression part of the compressor and supply the first working medium to a high-pressure compression part of the compressor, an organic Rankine cycle engine using, as a second working medium, an organic substance which is a cooling medium of the intermediate cooler is provided.
Abstract:
A turbine ventilation structure includes: an exhaust diffuser including inner and outer tubes to form an exhaust passage for exhaust gas; a strut extending across the exhaust diffuser from a housing to support a bearing inside the inner tube; a strut cover in the exhaust passage that covers the strut; and a connecting member disposed downstream of the strut cover and including a hollow portion to connect the housing and the inner tube. The housing includes a first intake port to introduce an air from outside. The strut cover has a discharge hole at a rear edge portion thereof. The turbine ventilation structure includes a first ventilation passage extending from the first intake port through the hollow portion, then extending from an inner end portion of the strut through between the strut and the strut cover, and the discharge hole, into the exhaust passage.
Abstract:
A combined-type gas turbine engine system is provided which achieves high efficiency by very effectively using exhaust heat from a gas turbine engine. In a gas turbine engine system including: a compressor for compressing a first working medium; a heater for heating the compressed first working medium by an external heat source; a turbine for outputting power from the first working medium; an intermediate cooler provided at the compressor for cooling the first working medium compressed by a low-pressure compression part of the compressor and supplying the first working medium to a high-pressure compression part of the compressor; and an exhaust heat boiler using as a heating medium an exhaust gas from the turbine, a Rankine cycle engine using the intermediate cooler and the exhaust heat boiler as heat sources and a cooling medium of the intermediate cooler as a second working medium.