Abstract:
Method and apparatus for gas-liquid equilibration (tonometry) in a transportable vessel. Specifically the method and device is concerned with tonometry of blood or buffer solution in a syringe. The compartment formed when a syringe plunger is partially inserted into a syringe barrel serves as a tonometer chamber where gas of known composition is bubbled through a liquid sample. Gas enters the chamber through small holes in the tip of the syringe plunger and bubbles upward through the sample. The syringe plunger itself is a second chamber which is used for heating and humidifying the gas prior to entering the tonometer chamber. The entire syringe is housed in a temperature controlled environment during equilibration. This environment allows observation of the entire tonometry process. After equilibration the syringe tonometer is easily removed from the heat controlled environment and is used as the sample's transport vessel. The syringe configuration allows easy entry of the sample into the target sytem, e.g. a blood gas analyzer.
Abstract:
Method and system for sampling and determining chemical substances such as blood gases, in a fluid matrix, such as blood, by bringing the chemical substances into equilibrium with a liquid in a fiber probe, passing the equilibrated liquid to a sensor adjacent the equilibrium region and on into a hollow fiber line enclosed in a calibration chamber. Calibration of the sensors is accomplished by reversing the flow of liquid from the hollow fiber line to the sensors. In the system chemical substances for sensor calibration are provided by an electric proportioner whose output is continuously controlled by the output of the sensors such that the substances proportioned into a fluid in the calibration chamber surrounding the hollow fiber line are substantially the same as the substances within the matrix. The concentration of substances is determined by the output of the sensors and the amount of substances fed from the proportioner to the fluid surrounding the hollow fiber line. When the substances being measured are in equilibrium with both the matrix and fluid surrounding the hollow fiber line, a null response is obtained at the sensors.
Abstract:
An alveolar gas sampling system comprises a catheter adapted for placement in a patient's nostril or in an endotracheal tube and connected to a positive displacement pump through a three way valve. Signal means for detecting onset of inspiration and expiration is mounted at the tip of the catheter and connected to a controller. The positive displacement pump is driven by a reversible stepper motor actuated by the controller during the flow of alveolar air. When the desired amount of alveolar gas has been sampled, the stepper motor is reversed and the position of the valve is switched by the controller causing the alveolar gas collected in the positive displacement pump to be expelled for analysis.
Abstract:
A noninvasive system and method for monitoring arterial oxygen saturation levels which may also be used to continuously and noninvasively monitor blood pressure, including generating a continuous blood pressure waveform. The apparatus of the described embodiment includes a red LED and an infrared LED which are positioned to direct their respective light beams into, or reflected by a patient's body part. A phototransducer device is positioned to receive the light beams which are transmitted through the body part. A pressure cuff surrounds the body part and the LEDs. During calibration periods, pressure is applied to the body part and the systolic and mean blood pressures are determined and the arterial oxygen saturation level in the body part is determined. The pressure is then released from the body part and another arterial oxygen saturation level is determined and the difference between the two oxygen saturation levels is used as a calibration factor during later monitoring periods to remove the effect of nonarterial oxygen saturation levels on the values obtained during the subsequent monitoring period. The systolic and mean arterial pressures measured during a calibration period are used to develop a Hardy model compliance curve wherein the pressure-volume relationship of the arteries is determined. The modulation of the red LED light beam which strikes the photodetector, which corresponds to changes in arterial volume, can be used according to the Hardy model to continuously calculate a blood pressure waveform for the patient.
Abstract:
A system for automatically withdrawing blood from a patient and testing various parameters of the blood, such as oxygen saturation, hemoglobin, gas content (PO.sub.2, PCO.sub.2) and pH, includes a withdrawal unit which automatically withdraws a measured volume of blood, and returns all of it to the patient except a small measured quantity which is provided to an analysis unit that measures the gas content and pH. The withdrawal unit includes provision for continuously monitoring patients' blood pressure, irrigation from a standard I.V. source between blood withdrawals, or a constant low flush of saline, alternatively, as well as detection of any air in the blood, which results in shutting down the system and activating an air alarm. The withdrawal unit also has provision for automatically withdrawing a small sample of blood, measuring oxygen content, and returning all blood to the patient, all on a programmed basis. The analysis unit includes two-point gas and pH calibration and includes use of calibration fluid for washout. In each complete use cycle, blood from the withdrawal unit is washed into the analysis unit and blood in the analysis unit is moved and washed out using saline, water and calibration fluids. The withdrawal unit may be used alone to acquire blood samples, and the analysis unit may be fed by more than one withdrawal unit or by manually-acquired blood specimens.
Abstract:
The hematocrit of blood (i.e., the percentage of whole blood volume occupied by red blood cells) perfusing a finger is determined by stimulating the finger with two current frequencies, one relatively high (e.g., 10 MHZ) and the other relatively low (e.g., 100 KHz). Voltages induced in the finger in response to the two current frequencies are then captured and separated into baseline and pulsatile components. The hematocrit is determined as a function of the ratio of the high frequency pulsatile component to the low frequency pulsatile component, multiplied by the ratio of the square of the low frequency baseline component to the square of the high frequency baseline component. The signal-to-noise ratio of the captured voltages can be enhanced by the application of external pressure to the finger, such as by applying a pressure cuff to the finger.
Abstract:
A non-airtight method for determining alveolar ventilation, oxygen uptake and carbon dioxide production which comprises introducing a known amount of an inert gas into the airway of a patient during inspiration and monitoring the expired gas until a steady state is reached wherein the volume of inert gas inhaled is equal to the amount exhaled and subsequently monitoring the expired air containing a known volume of inert gas for inert gas, carbon dioxide and oxygen concentrations.
Abstract:
The hematocrit of blood (i.e., the percentage of whole blood volume occupied by red blood cells) perfusing a finger is determined by stimulating the finger with two current frequencies, one relatively high (e.g., 10 MHZ) and the other relatively low (e.g., 100 KHz). Voltages induced in the finger in response to the two current frequencies are then captured and separated into baseline and pulsatile components. The hematocrit is determined as a function of the ratio of the high frequency pulsatile component to the low frequency pulsatile component, multiplied by the ratio of the square of the low frequency baseline component to the square of the high frequency baseline component. The volume of blood perfusing the body part at which hematocrit is to be measured may be increased on each pulse by the application of external pressure to the finger, such as by applying a pressure cuff to the finger. Assemblages including two pairs of electrodes are used to effect the determination of hematocrit. The assemblages may also include a component for applying pressure to the body part at which hematocrit is measured.
Abstract:
Apparatus and method are provided for calibrating a mass spectrometer. The calibration hardware includes a relatively small, relatively low pressurized tank for containing calibration gas. The calibration gas tank is preferably located inside the same housing that contains the ion source assembly and the analyzing section of the mass spectrometer. Each of the calibration gas and sample gas, whose components are to be determined, communicates with its own associated valve. These two valves control the flow of a selected one of the sample gas and the calibration gas to the ion source assembly. The calibration gas valve has an extremely low leakage rate and can be controlled to permit the passage of very low flow rates of calibration gas, which can be of benefit in checking the linearity associated with the ion source assembly pressure. For each calibration procedure, very small amounts of calibration gas are utilized, in a range around 10.sup.-5 STD cc. A related method for conditioning an electron multiplier device is also disclosed in which the gain of one or more selected channels thereof is modified so that the output signal strengths of the device are comparable in magnitude. Calibration of the mass spectrometer occurs frequently and automatically. In one emobodiment, the mass spectrometer calibration is a direct function of each mass spectrometer measurement. Consequently, improved accuracy and heightened sensitivity are achieved in the mass spectrometer, while reducing the use or loss of valuable calibration gas.
Abstract:
A method of accurately mixing gases in desired proportions which comprises establishing the gases to be mixed at a uniform pressure; sequentially feeding the gases through a common restrictor for proportionate time periods to give the gas mix desired. The apparatus used includes a pressurizing gas reservoir unit which adjusts all gases to be mixed to have a common pressure; electronically actuated rapid response fluidic interface valves; a common restrictor through which the gases are passed to a receiving and mixing chamber; and timing means controlling the valves to allow gases to be sequentially passed therethrough for pre-set time periods.