Abstract:
A first network device may generate a layer-3 virtual private network (L3VPN) route advertisement associated with the first network device. The L3VPN route advertisement may include a first portion, associated with a second network device included in an L3VPN with the first network device, for separate transport-layer tunnel and service-layer tunneling, and a second portion, associated with the second network device, for collapsed transport-layer and service-layer tunneling. The first network device may transmit the L3VPN route advertisement.
Abstract:
A network device identifies an Open Shortest Path First (OSPF) link between the network device and a layer 2 network as one of a point-to-multipoint over broadcast interface or a point-to-multipoint over non-broadcast multi access (NBMA) interface, and performs database synchronization and neighbor discovery and maintenance using one of a broadcast model or a NBMA model. The network device also generates a link-state advertisement for the network device, where the link-state advertisement includes a separate link description for each point-to-point link within the layer 2 network; and sends the link-state advertisement to each fully adjacent neighbor in the layer 2 network.
Abstract:
Techniques are described for utilizing two-part metrics with link state routing protocols of computer networks. For example, link state advertisements communicated by a router convey outbound cost metrics representative of outbound costs for the router to send network traffic to a network, and inbound cost metrics representative of inbound costs to receive network traffic from the network. The techniques may be particularly useful with respect to shared access networks, including broadcast or non-broadcast multi-access networks.
Abstract:
BGP can advertise multiple routes for same prefix via BGP add path (RFC 7911). BGP attempts to pack prefixes with same path attributes into the same BGP update message. Protocol nexthop is one of the path attributes. Since these BGP add paths routes usually have different protocol nexthops, different routes for a single prefix could end up being spread out when being advertised. That may, in turn, result in additional calls to download routes to FIB, advertisement to peers and multiple runs of multipath calculation for the same prefix when multipath is configured. To help avoid this situation, when BGP advertises add-path routes, BGP can send the multiple paths for the same prefix in the adjacent update messages. BGP can use extended Network Layer Reachability Information (NLRI) field to carry nexthop along with its associated prefix in BGP update message to send plain IPv4 unicast routes. In addition, BGP reachability information can be encoded in MP_REACH_NLRI attribute with which protocol nexthop information is carried along with its own prefix in the extended “NLRI” field. A BGP speaker can use some data structure to link these routes for the same prefix and put multiple routes for the same prefix in adjacent or even same BGP update messages.
Abstract:
In general, techniques are described for ensuring the distribution of Virtual Private Network (VPN) routes in a service provider network configured with multiple VPN services. In some examples, a network device receives configuration data that defines a VPN service associated with a route target. The network device, responsive to receiving the configuration data, sends a request for routes that match a type of the VPN service to a routing protocol speaker. The network device receives routes that match the type of the VPN service and are associated with the route target, installs the routes that match the type of the VPN service and are associated with the route target to the routing information base. The network device forwards traffic for the VPN service in accordance with the installed routes.
Abstract:
In general, techniques are described for ensuring the distribution of Virtual Private Network (VPN) routes in a service provider network configured with multiple VPN services. In some examples, a network device receives configuration data that defines a VPN service associated with a route target. The network device, responsive to receiving the configuration data, sends a request for routes that match a type of the VPN service to a routing protocol speaker. The network device receives routes that match the type of the VPN service and are associated with the route target, installs the routes that match the type of the VPN service and are associated with the route target to the routing information base. The network device forwards traffic for the VPN service in accordance with the installed routes.
Abstract:
Techniques are described for utilizing two-part metrics with link state routing protocols of computer networks. For example, link state advertisements communicated by a router convey outbound cost metrics representative of outbound costs for the router to send network traffic to a network, and inbound cost metrics representative of inbound costs to receive network traffic from the network. The techniques may be particularly useful with respect to shared access networks, including broadcast or non-broadcast multi-access networks.