Abstract:
A silver halide color photographic light-sensitive material, having at least one yellow dye image-forming layer, at least one magenta dye image-forming layer, and at least one cyan dye image-forming layer, each provided on a transparent support, which shows 3.0 or more maximum transmission densities for the respective layers upon area exposure with an exposure time of 10−4 sec, and shows a transmission density in a range of 0.95 to 1.05 when color development is started in 30 minutes after exposure with an exposure amount that gives a density of 1.0, when the light-sensitive material is subjected to color development started in 5 minutes after exposure; and an image-forming-method using the same.
Abstract:
The present invention provides a method for producing asymmetrical mono-substituted alkylated compounds of α-amino acids that are represented by a specific formula, using an aldimine-type Schiff base. In the method of the present invention, the process of alkylating an aldimine-type Schiff base in a medium in the presence of an optically-active quaternary ammonium salt phase-transfer catalyst and an inorganic base is initiated, and subsequently the reaction is quenched at a time earlier than a time for completion of the stoichiometric reaction of the alkylation reaction, so that a mono-substituted alkylated product with high optical purity can be obtained.
Abstract:
The present technology relates to an image processing device including: a reducing section configured to generate a plurality of reduced images by reducing an input image at a plurality of reduction ratios; a noise removal processing section configured to generate noise-removed images by performing noise removal processing on each of the reduced images; an enlarging section configured to generate enlarged images equal to each other in size by enlarging each of the noise-removed images; and a mixing section configured to generate an output image by mixing two or more different enlarged images of the enlarged images with each other.
Abstract:
Provided is a signal encoding apparatus including: an encoding unit which encodes a quantization value of a frequency spectrum in an input signal through a plurality of encoding algorithms; an amplitude change amount calculation unit which calculates, for each of a plurality of subbands of the frequency spectrum, an amplitude change amount with respect to the frequency spectrum based on a spectrum envelope of the frequency spectrum; and an encoding selection unit which selects, for each subband, the encoding algorithm according to a degree of deflection of an occurrence probability distribution of the quantization value in the amplitude change amount among the plurality of the encoding algorithms.
Abstract:
According to one embodiment, a luminaire includes an image forming part, a display part, a light-emitting part and a control part. The image forming part is configured to form an image. The display part is configured to display the image formed. by the image forming part. The light-emitting part is configured to generate a light having directivity, and to irradiate the light through the display part to an irradiation area, with luminous intensity distribution of the light being controlled. The control part is configured to control the image forming part, the display part and the light-emitting part.
Abstract:
The present invention provides an image forming method and an ink composition whereby deterioration of a head plate, which is formed of silicon, is suppressed, and an image with higher precision is formed stably, the ink composition including an inorganic silicate compound and being ejected to form an image from an ink-jet head having a nozzle plate where a C8F17C2H4SiCl3 film (fluorocarbon film) is provided on the surface thereof at a side toward the ink ejection direction of a nozzle.
Abstract:
A dispersion of a water-insoluble colorant, having: fine particles of at least one kind of water-insoluble colorant dispersed in a water-containing medium; and a polymer compound or surfactant having a structural unit represented by formula (I): wherein R1 represents a hydrogen atom or a substituent; one of R2 to R5 represents a single bond which bonds to W, and the others each independently represent a hydrogen atom or a substituent; Q represents a group of atoms necessary for forming, with the carbon atoms, a ring; J represents —CO—, —COO—, —CONR6—, —OCO—, a methylene group, a phenylene group, or —C6H4CO—; R6 represents a hydrogen atom, an alkyl group, an aryl group or an aralkyl group; W represents a single bond or a divalent linking group.
Abstract:
The present invention relates to a decoding apparatus, a decoding method, an encoding apparatus, an encoding method, and programs that can shorten the delay time caused by the band extension at the time of decoding, and restrain increases in resources on the decoding side.A higher frequency component generating unit (73) generates a pseudo higher frequency spectrum by using a lower frequency spectrum (SP-L) and a higher frequency envelope (ENV-H). A phase randomizing unit (74) randomizes the phase of the pseudo higher frequency spectrum, based on a random flag (RND). An inverse MDCT unit (75) denormalizes the lower frequency spectrum (SP-L) by using a lower frequency envelope (ENV-L), and combines the pseudo higher frequency spectrum supplied from the phase randomizing unit (74) with the denormalized lower frequency spectrum (SP-L). The combination result is used as the spectrum of the entire band. The present invention can be applied to a decoding apparatus that performs band extension decoding, for example.
Abstract:
An aqueous dispersion, having particles of a water-insoluble colorant containing at least one pigment, with the particles being dispersed in a medium containing therein both water and a dispersing agent, wherein the water-insoluble colorant has a crystalline structure, and an average particle diameter of the particles is in the range of from 5 nm to 40 nm, and a monodispersity of the particles is 1.5 or less.