Abstract:
An apparatus and method for a micromachined mechanical switch device having first and second cooperating electrical switch contacts formed by respective first and second patterns of robust carbon nanotube thin film structures for forming intermittent electrical contact between the first and second conductors in response to the applied force urging the first and second cooperating patterns of carbon nanotube thin film structures together into momentary or substantially permanent physical contact.
Abstract:
A patterned layer is formed by removing nanoscale passivating particle from a first plurality of nanoscale structural particles or by adding nanoscale passivating particles to the first plurality of nanoscale structural particles. Each of a second plurality of nanoscale structural particles is deposited on each of corresponding ones of the first plurality of nanoscale structural particles that is not passivated by one of the plurality of nanoscale passivating particles.
Abstract:
A method including, in one embodiment, severing a sample at least partially from a substrate by cutting the substrate with a focused ion beam (FIB), capturing the substrate sample by activating a grasping element, and separating the captured sample from the substrate. The captured sample may be separated from the substrate and transported to an electron microscope for examination.
Abstract:
A method including, in one embodiment, severing a sample at least partially from a substrate by cutting the substrate with a focused ion beam (FIB), capturing the substrate sample by activating a grasping element, and separating the captured sample from the substrate. The captured sample may be separated from the substrate and transported to an electron microscope for examination.
Abstract:
A MEMS microconnector including a compliant handle and a deflectable connection member. The compliant handle is configured to frictionally engage a manipulation probe. The deflectable connection member includes a first end coupled to the handle and a second end configured to deflect and thereby engage a receptacle in response to disengagement of the manipulation probe from the handle.
Abstract:
A patterned layer is formed by removing nanoscale passivating particle from a first plurality of nanoscale structural particles or by adding nanoscale passivating particles to the first plurality of nanoscale structural particles. Each of a second plurality of nanoscale structural particles is deposited on each of corresponding ones of the first plurality of nanoscale structural particles that is not passivated by one of the plurality of nanoscale passivating particles.
Abstract:
A MEMS microconnector including a compliant handle and a deflectable connection member. The compliant handle is configured to frictionally engage a manipulation probe. The deflectable connection member includes a first end coupled to the handle and a second end configured to deflect and thereby engage a receptacle in response to disengagement of the manipulation probe from the handle.