摘要:
This invention relates generally to an electrically conductive valve metal mesh of extreme void fraction. More particularly the invention relates in a most important aspect to an application thereof for an electrode structure in such a way as to prevent the corrosion of steel, including reinforcing steel in concrete, by cathodic protection.
摘要:
Coiled valve metal mesh of great void fraction and lengthy dimension and having a continuum of interconnected metal strands is coated with an electrocatalytic coating from liquid composition. The coating operation proceeds by contacting the mesh with liquid coating composition while the mesh is maintained in coiled form. This highly efficient coating method is continued through a curing operation while further maintaining the coated mesh in coiled form. Pretreatment preceding coating operation, e.g., degreasing and etching, may also be accomplished without uncoiling of the mesh. The coated mesh can later be uncoiled and current distributors welded to it for use as an electrode, e.g., in cathodic protection.
摘要:
An anode for cathodically-protected steel-reinforced concrete is embedded in an ion-conductive overlay on the concrete structure. The anode comprises at least one sheet of highly expanded valve metal mesh having a pattern of voids defined by a network of valve metal strands connected at a multiplicity of nodes. This provides a redundancy of current-carrying paths through the mesh which ensures effective current distribution throughout the mesh even in the event of possible breakage of a number of individual strands. The surface of the valve metal mesh carries an electrochemically active coating. At least one current distribution member is welded to the valve metal mesh. The entire area of the structure to be protected, excluding non-protected openings for obstacles and the like, is covered by a single piece of the mesh, or several pieces in close proximity with one another.
摘要:
This invention relates generally to an electrically conductive valve metal mesh of extreme void fraction. More particularly the invention relates in a most important aspect to an application thereof for an electrode structure in such a way as to prevent the corrosion of steel, including reinforcing steel in concrete, by cathodic protection.
摘要:
A method of installing a coated valve metal electrode as impressed-current anode in a cathodic protection system for a steel-reinforced concrete structure comprises providing a roll of coated valve metal mesh, unrolling the mesh and installing it in conformity with the structure, fixing the mesh to the structure and embedding the mesh in an ion-conductive overlay. The mesh is a highly expanded valve metal sheet providing multiple current paths and therefore enhanced redundancy. Current distributor strips can be welded to the mesh after unrolling.
摘要:
An anode for cathodically-protected steel-reinforced concrete is embedded in an ion-conductive overlay on the concrete structure. The anode comprises at least one sheet of highly expanded valve metal mesh having a pattern of voids defined by a network of valve metal strands connected at a multiplicity of nodes. This provides a redundancy of current-carrying paths through the mesh which ensures effective current distribution throughout the mesh even in the event of possible breakage of a number of individual strands. The surface of the valve metal mesh carries an electrochemically active coating. At least one current distribution member is welded to the valve metal mesh. The entire area of the structure to be protected, excluding non-protected openings for obstacles and the like, is covered by a single piece of the mesh, or several pieces in close proximity with one another.
摘要:
An anode for cathodically-protected steel-reinforced concrete is embedded in an ion-conductive overlay on the concrete structure. The anode comprises at least one sheet of highly expanded valve metal mesh having a pattern of voids defined by a network of valve metal strands connected at a multiplicity of nodes. This provides a redundancy of current-carrying paths through the mesh which ensures effective current distribution throughout the mesh even in the event of possible breakage of a number of individual strands. The surface of the valve metal mesh carries an electrochemically active coating. At least one current distribution member is welded to the valve metal mesh. The entire area of the structure to be protected, excluding non-protected openings for obstacles and the like, is covered by a single piece of the mesh, or several pieces in close proximity with one another.
摘要:
An anode for cathodically-protected steel-reinforced concrete is embedded in an ion-conductive overlay on the concrete structure. The anode comprises at least one sheet of highly expanded valve metal mesh having a pattern of voids defined by a network of valve metal strands connected at a multiplicity of nodes. This provides a redundancy of current-carrying paths through the mesh which ensures effective current distribution throughout the mesh even in the event of possible breakage of a number of individual strands. The surface of the valve metal mesh carries an electrochemically active coating. At least one current distribution member is welded to the valve metal mesh. The entire area of the structure to be protected, excluding non-protected openings for obstacles and the like, is covered by a single piece of the mesh, or several pieces in close proximity with one another.
摘要:
A rechargeable ambient temperature electrical storage cell utilizing an alkali metal or alkaline earth metal and sulfur electrochemical reaction pair. The cell includes an anhdyrous liquid anode separated from an anhydrous, sulfur containing catholyte by a cationic permeable partition.
摘要:
Cathodic protection of a reinforced concrete structure utilizes a metal anode such as a zinc anode in combination with a pressure sensitive ionically conductive hydrogel in contact with at least a portion of the surface of the anode. Preferably, the anode and ionically conductive hydrogel are flexible and supplied in roll form. The combination may further include the addition of salt to the hydrogel as well as application to the metal-hydrogel combination of Type III cement. The cathodic protection may be carried out with or without a power source.