摘要:
A secondary battery according to the present exemplary embodiment is a secondary battery including a laminated electrode body provided with at least one pair of positive and negative electrodes and an outer enclosure that accommodates the laminated electrode body, wherein the outer enclosure includes one or more concave portions, inside a border corresponding to an outer edge of an electrode surface of an outermost layer of the laminated electrode body, on a surface facing the electrode surface, and wherein, when a band-shaped outer circumferential region having an area that is a half of an area inside the border is set inside the border, at least one of the concave portions is located inside the outer circumferential region.
摘要:
There is provided a control system for a lithium secondary battery that can quantitatively sense a deterioration state inherent in a lithium secondary battery using silicon oxide as a negative electrode active material, that is, the nonuniform reaction state of a negative electrode. A control system for a lithium secondary battery including a positive electrode, a negative electrode using silicon oxide as a negative electrode active material, and a lithium reference electrode having a reference potential with respect to the negative electrode includes measurement means for measuring a voltage V of the negative electrode with respect to the lithium reference electrode and a discharge capacity Q of the lithium secondary battery during discharge of the lithium secondary battery; generation means for generating a V-dQ/dV curve representing a relationship between dQ/dV, which is a proportion of an amount of change dQ in the discharge capacity Q to an amount of change dV in the voltage V, and the voltage V; calculation means for calculating an intensity ratio of two peaks appearing on the V-dQ/dV curve for two voltage values in the voltage V; and sensing means for sensing a state of the negative electrode utilizing the intensity ratio.
摘要:
An objective of the present invention is to provide a lithium secondary battery which can achieve a higher capacity and a longer life without reduction in a lower voltage in the battery. In the present invention, a compound represented by general formula (I) described below is used as a cathode active material, and a compound represented by general formula (II) described below is used as an anode active material; Lia1(Nix1Mn2-x1-y1M1y1)O4 (I)wherein the M1 is at least one of Ti, Si, Mg and Al, the a1 satisfies 0
摘要:
An objective of the present invention is to provide a lithium secondary battery which can achieve a higher capacity and a longer life without reduction in a lower voltage in the battery. In the present invention, a compound represented by general formula (I) described below is used as a cathode active material, and a compound represented by general formula (II) described below is used as an anode active material; Lia1(Nix1Mn2-x1-y1M1y1)O4 (I) wherein the M1 is at least one of Ti, Si, Mg and Al, the a1 satisfies 0≦a1≦1, the x1 satisfies 0.4≦x1≦0.6, and the y1 satisfies 0≦y1≦0.4; and Lia2M21-y2M3y2Oz2 (II) wherein the M2 is at least one of Si and Sn; the M3 is at least one of Fe, Ni and Cu, the a2 satisfies 0≦a2≦5, the y2 satisfies 0≦y2
摘要:
An objective of the present invention is to provide a lithium secondary battery which can achieve a higher capacity and a longer life without reduction in a lower voltage in the battery. In the present invention, a compound represented by general formula (I) described below is used as a cathode active material, and a compound represented by general formula (II) described below is used as an anode active material; Lia1(Nix1Mn2-x1-y1M1y1)O4 (I) wherein the M1 is at least one of Ti, Si, Mg and Al, the a1 satisfies 0≦a1≦1, the x1 satisfies 0.4≦x1≦0.6, and the y1 satisfies 0≦y1≦0.4; and Lia2M21-y2M3y2Oz2 (II) wherein the M2 is at least one of Si and Sn; the M3 is at least one of Fe, Ni and Cu, the a2 satisfies 0≦a2≦5, the y2 satisfies 0≦y2≦0.3, and the z2 satisfies 0≦z2≦2.