Abstract:
A driving apparatus of a display is disclosed. The driving apparatus mentioned above includes a digital-to-analog converter circuit and an output buffer circuit. The digital-to-analog converting circuit receives a display data with a digital format for generating a gray-level voltage. The output buffer circuit has an output terminal to output an output signal. The output buffer circuit receives the gray-level voltage, a pre-charge enable signal and the output signal and provides a pre-charge output signal to the output terminal of the output buffering circuit according to the pre-charge enable signal and a comparison result of the gray-level voltage and the output signal.
Abstract:
A driving apparatus of a display is disclosed. The driving apparatus mentioned above includes a digital-to-analog converter circuit and an output buffer circuit. The digital-to-analog converting circuit receives a display data with a digital format for generating a gray-level voltage. The output buffer circuit has an output terminal to output an output signal. The output buffer circuit receives the gray-level voltage, a pre-charge enable signal and the output signal and provides a pre-charge output signal to the output terminal of the output buffering circuit according to the pre-charge enable signal and a comparison result of the gray-level voltage and the output signal.
Abstract:
A display driving device is disclosed. The display driving device includes an image data transmission interface, a frame buffer, and an over-driving processor. The image data transmission interface transmits image data, which is then received by and stored in the frame buffer. The over-driving processor is coupled to the image data transmission interface to receive current image data provided by the image data transmission interface, and also coupled to the frame buffer to receive previous image data saved in the frame buffer. In a dynamic display mode, the over-driving processor generates a display driving signal according to the previous image data and the current image data.
Abstract:
An apparatus for error compensation of a self calibrating current source adapted for compensating errors of at least one self calibrating current source. The compensation apparatus includes an imitative self calibrating current source, a current source reference apparatus and an error compensation apparatus. The imitative self calibrating current source is used to simulate the structure of the self calibrating current source to generate an error bias signal as the error of the self calibrating current source. The current source reference apparatus is used to generate an ideal bias signal. The error compensation apparatus generates a compensation bias signal to compensate errors of the self calibrating current source according to the difference of the error bias signal and the ideal bias signal.
Abstract:
An analog power-saving apparatus and a method thereof for sharing electric charges enable the application device to entirely achieve power-saving goal by using an analog judgment mechanism. According to the judgment mechanism, in a duration when the energy-storing unit must distribute the stored electric charges to the load capacitor and an amount of the electric charges stored in the energy-storing unit is less than an amount of the electric charges stored in the load capacitor, the path for the energy-storing unit to distribute electric charges to the load capacitor is blocked; and after the load capacitor releases the electric charges thereof to the energy-storing unit for storage, the electric charges stored in the load capacitor after discharge are controlled to be not less than an amount of the electric charges stored in the energy-storing unit after storage.
Abstract:
A device and method for enhancing current driving are provided. The device comprises an operational amplifier, a monitor device, and an auxiliary output device. The monitor device is adopted to monitor whether the non-inverse input signal is close to a maximum or minimum voltage of an input source of the operational amplifier. When the non-inverse input signal is close to the maximum or minimum voltage, the auxiliary output device outputs an auxiliary current to an output terminal of the device of enhancing current driving.
Abstract:
A display and a driving control method for the display are provided. The display includes a display panel, a driving control module and a power-saving control module. The display panel is configured to display a plurality of frames. The driving control module is coupled to the display panel for providing a driving signal of each frame to the display panel. The power saving control module is coupled to the driving control module. The displaying period of each frame includes a first period and a second period. During the first period, the display enters a displaying mode. During the second period, the power-saving control module adjusts the operating parameters of the driving control module such that the display enters a power-saving mode. As a result, the power consumption of the display can be reduced.
Abstract:
An analog power-saving apparatus and a method thereof for sharing electric charges enable the application device to entirely achieve power-saving goal by using an analog judgment mechanism. According to the judgment mechanism, in a duration when the energy-storing unit must distribute the stored electric charges to the load capacitor and an amount of the electric charges stored in the energy-storing unit is less than an amount of the electric charges stored in the load capacitor, the path for the energy-storing unit to distribute electric charges to the load capacitor is blocked; and after the load capacitor releases the electric charges thereof to the energy-storing unit for storage, the electric charges stored in the load capacitor after discharge are controlled to be not less than an amount of the electric charges stored in the energy-storing unit after storage.
Abstract:
A driving apparatus for driving a plurality of display devices of a panel is provided. The driving apparatus comprises a controllable current source and a plurality of current storage and duplicating apparatuses. Wherein, each of the current storage and duplicating apparatuses is coupled to the controllable current source and one of the display devices corresponding thereto to receive a first current from the controllable current source, and to output a second current which is equal, or proportional to the first current to drive the display apparatus.
Abstract:
A source driver including a data register, a level shifter, a gamma correction unit, a digital-to-analog converter and a buffer is provided. The data register stores a digital data signal. The level shifter pulls up the level of the digital data signal. The gamma correction unit provides a gamma curve. The digital-to-analog converter transforms the level-pulled-up digital data signal into an analog data signal with reference to the gamma curve. The buffer outputs the analog data signal to drive a corresponding data line. The level shifter, the gamma correction unit, the digital-to-analog converter and the buffer are all figured to receive a first set of reference voltages or a second set of reference voltages.