摘要:
A system and method for determining vehicle CG height and mass in real-time. The method includes selecting a set of vehicle parameters to be considered that includes the vehicle mass and the center of gravity height of the vehicle. Frequency responses are generated using the dynamic model and a plurality of different values for the selected vehicle parameters. During vehicle operation, frequency responses are calculated from a measured vehicle lateral acceleration to a roll angle and/or a roll rate of the vehicle. The generated frequency responses and the calculated frequency responses are compared to determine which of the generated frequency responses more closely matches the calculated frequency responses. The generated frequency responses that most closely match the calculated frequency responses are used to determine the center of gravity height and the vehicle mass from the values for the vehicle parameters.
摘要:
A system and method for estimating vehicle side-slip velocity that includes measuring the lateral acceleration of the vehicle, measuring the yaw rate of the vehicle, measuring the longitudinal speed of the vehicle and measuring the steering angle of the vehicle. The measured longitudinal speed is corrected to provide a true longitudinal speed using a filter factor based on the vehicle-dependent parameters and a steering angle. A constant is defined based on the measured longitudinal speed and a function is defined based on the combination of the vehicle-dependent parameters and the lateral acceleration. Side-slip acceleration is calculated using the measured lateral acceleration, the true longitudinal speed, the yaw rate, the constant and the function.
摘要:
A system and method for determining vehicle CG height and mass in real-time. The method includes selecting a set of vehicle parameters to be considered that includes the vehicle mass and the center of gravity height of the vehicle. Frequency responses are generated using the dynamic model and a plurality of different values for the selected vehicle parameters. During vehicle operation, frequency responses are calculated from a measured vehicle lateral acceleration to a roll angle and/or a roll rate of the vehicle. The generated frequency responses and the calculated frequency responses are compared to determine which of the generated frequency responses more closely matches the calculated frequency responses. The generated frequency responses that most closely match the calculated frequency responses are used to determine the center of gravity height and the vehicle mass from the values for the vehicle parameters.
摘要:
A system and method for estimating vehicle roll rate and roll angle. The system includes a suspension deflection sensor provided at each wheel of the vehicle that provides suspension measurement signals indicative of the roll of the vehicle. The system also includes a roll rate estimator that uses the suspension measurement signals and an estimated tire deflection of the wheels to provide a roll rate estimation signal. The system also includes a vehicle roll angle and a roll rate estimator that uses the roll rate estimation signal and a dynamic model to estimate the roll angle and refine the roll rate. The roll rate estimator calculates the roll rate one way if none of the vehicle wheels are off of the ground and calculates it another way if any of the wheels are off of the ground.
摘要:
A system and method for estimating vehicle lateral velocity that defines a relationship between front and rear axle lateral forces and front and rear axle side-slip angles. The method includes providing measurements of vehicle yaw-rate, lateral acceleration, longitudinal speed, and steering angle. The method also includes using these measurements to provide a measurement of the front and rear axle forces. The method calculates a front axle lateral velocity and a rear axle lateral velocity, and calculates a front axle side-slip angle based on the rear axle lateral velocity and a rear axle side-slip angle based on the front axle lateral velocity. The method then estimates front and rear axle forces, and selects a virtual lateral velocity that minimizes an error between the estimated and measured lateral axle forces. The method then provides an estimated vehicle lateral velocity using the selected virtual lateral velocity.
摘要:
A system and method for estimating vehicle lateral velocity and surface coefficient of friction using front and rear axle lateral force versus side-slip angle tables and sensor measurements. The sensor measurements include lateral acceleration, yaw-rate, longitudinal speed and steering angle of the vehicle. The method includes calculating front and rear axle lateral forces and front and rear side-slip angles on the axles of the vehicle. The method also includes identifying two equations from the calculated lateral forces and the vehicle measurements. The method provides tables that identify a relationship between the calculated front and rear axle lateral forces and the front and rear side-slip angles, and determines the vehicle lateral velocity and surface coefficient of friction from the tables.
摘要:
A system and method for estimating vehicle lateral velocity. The method uses a kinematic estimator constructed as a closed-loop Leunberger observer. The kinematic estimator is based on a kinematic relationship between lateral acceleration measurement and rate of change of lateral velocity. The method provides measurement updates based on virtual lateral velocity measurements from front and rear axle lateral force versus axle side-slip angle tables using the lateral acceleration, yaw-rate, longitudinal speed, and steering angle measurements. The method calculates front and rear axle lateral forces from the lateral acceleration and yaw-rate measurements. The method estimates front and rear axle side-slip angles from the calculated front and rear axle lateral forces using the tables. The method calculates multiple virtual lateral velocities from the front and rear side-slip angles and selects one of the virtual lateral velocities that minimizes an error between a measured force and an estimated force as the lateral velocity.
摘要:
An analytical methodology for the specification of progressive optimal compression damping of a suspension system to negotiate severe events, yet provides very acceptable ride quality and handling during routine events. In a broad aspect, the method provides a progressive optimal unconstrained damping response of the wheel assembly with respect to the body. In a preferred aspect, the method provides a progressive optimal constrained damping response of the wheel assembly with respect to the body, wherein below a predetermined velocity a conventional damper force is retained.
摘要:
An analytical methodology for the specification of progressive optimal compression damping of a damper of a suspension system to negotiate a multiplicity of severe events, yet provides very acceptable ride quality and handling during routine events. The damping response of the damper is optimized based upon a progressive optimal constrained events damping function derived from a low envelope curve incorporated with a predetermined damper force acting on the wheel center below a predetermined wheel center velocity, u1, based on ride and handling considerations for a given vehicle or vehicle model according to the prior art methodology, whereby the low envelope curve is constructed utilizing a one degree of freedom nonlinear mechanical system model or a quarter car nonlinear mechanical system model.
摘要:
A system and method for estimating surface coefficient of friction in a vehicle system. The method includes providing a kinematics relationship between vehicle yaw-rate, vehicle speed, vehicle steering angle and vehicle front and rear axle side-slip angles that is accurate for all surface coefficient of frictions on which the vehicle may be traveling. The method defines a nonlinear function for the front and rear axle side-slip angles relating to front and rear lateral forces and coefficient of friction, and uses the nonlinear function in the kinematics relationship. The method also provides a linear relationship of the front and rear axle side-slip angles and the front and rear lateral forces using the kinematics relationship. The method determines that the vehicle dynamics have become nonlinear using the linear relationship and then estimates the surface coefficient of friction when the vehicle dynamics are nonlinear.