Abstract:
The earphone with inverse sound waves includes an earphone housing, a high frequency driver, and a low frequency driver. The earphone housing includes an inner space, a sound output portion, and a reflecting portion. The reflecting portion receives a passive diaphragm. The high frequency driver produces high frequency sound waves and has a sound output direction toward the sound output opening. The low frequency driver is mounted in the inner space of the earphone housing by a mounting brace. The low frequency driver is located between the high frequency driver and the passive diaphragm. A sound transmitting portion is formed between the mounting brace and the earphone housing. The low frequency driver produces low frequency sound waves and has a sound output direction toward the passive diaphragm. The passive diaphragm reflects the low frequency sound waves to the sound output opening via the sound transmitting portion.
Abstract:
A piezoelectric ceramic speaker includes a conductive plate and a round piezoelectric ceramic sheet. The conductive plate has notches and sound delivering holes. The round piezoelectric ceramic plate is stacked on a central region of the conductive plate. The notches are opened on a periphery region of the conductive plate and partly extended toward the central region. The notches are equiangularly arranged on the conductive plate with respect to the center of the conductive plate. Accordingly, auxiliary fixtures can pass through the notches to position the conductive plate. Hence, the conductive plate can be positioned by the fixtures during manufacturing processes. Consequently, the piezoelectric ceramic speaker can be mass produced with good yield rates. Additionally, since the round piezoelectric ceramic plate and the conductive plate are coaxially arranged, a dual-band earphone having the piezoelectric ceramic speaker can provide a better sound resolution performance.
Abstract:
A piezoelectric ceramic speaker includes a conductive plate and a round piezoelectric ceramic sheet. The conductive plate has notches and sound delivering holes. The round piezoelectric ceramic plate is stacked on a central region of the conductive plate. The notches are opened on a periphery region of the conductive plate and partly extended toward the central region. The notches are equiangularly arranged on the conductive plate with respect to the center of the conductive plate. Accordingly, auxiliary fixtures can pass through the notches to position the conductive plate. Hence, the conductive plate can be positioned by the fixtures during manufacturing processes. Consequently, the piezoelectric ceramic speaker can be mass produced with good yield rates. Additionally, since the round piezoelectric ceramic plate and the conductive plate are coaxially arranged, a dual-band earphone having the piezoelectric ceramic speaker can provide a better sound resolution performance.
Abstract:
The earphone with inverse sound waves includes an earphone housing, a high frequency driver, and a low frequency driver. The earphone housing includes an inner space, a sound output portion, and a reflecting portion. The reflecting portion receives a passive diaphragm. The high frequency driver produces high frequency sound waves and has a sound output direction toward the sound output opening. The low frequency driver is mounted in the inner space of the earphone housing by a mounting brace. The low frequency driver is located between the high frequency driver and the passive diaphragm. A sound transmitting portion is formed between the mounting brace and the earphone housing. The low frequency driver produces low frequency sound waves and has a sound output direction toward the passive diaphragm. The passive diaphragm reflects the low frequency sound waves to the sound output opening via the sound transmitting portion.