Abstract:
A device such as a printer, includes non-volatile memory storing a communications kernel. Upon startup, a microprocessor executes the communication kernel to prompt a host to download a setup kernel to the device. The microprocessor may verify the downloading using a check sum calculation. The microprocessor may execute the setup kernel to determine the operational characteristics on the device. For example, the microprocessor may interrogate the hardware elements of the device to determine a set of hardware characteristics. The microprocessor may also interrogate the device to determine a set of user selectable setup options and may further interrogate the device or a nonresident register for ownership and access attributes for selected modules and software. The microprocessor may link a number of resident and non-resident library modules, selected based on the operational characteristics. The library modules are dynamically linkable to reconfigure the software as operational characteristics change. The invention employs a dual kernel system, including a minimal communications kernel and a setup kernel to customize the device.
Abstract:
An apparatus, such as a printer or reader receives a data stream from a memory, such as from an RF or photonic memory, and compares portions of the data stream to a table of data. If a portion of the data matches an entry in the table, a corresponding entry in the table causes the apparatus to be automatically configured. Alternatively, an apparatus receives a data stream to be written, such as in a bar code symbol or tag memory. The apparatus analyzes portions of the data, comparing portions of the data to a reference table. If the apparatus identifies a match, the apparatus adjusts the writing of such data. For example, the printer writes a portion of the incoming data stream to both fields in a bar code symbol and in a portion of the memory in an adjacent RF readable tag.
Abstract:
Gaseous particles or gas-entrained particles may be conveyed by electric fields acting on charged species included in the gaseous or gas-entrained particles.
Abstract:
A heat exchange system includes an electrode configured to electrostatically control a flow of a heated gas stream in the vicinity of a heat transfer surface and/or a heat-sensitive surface.
Abstract:
An integrated circuit is configured for optical communication via an optical polymer stack located on top of the integrated circuit. The optical polymer stack may include one or more electro-optic polymer devices including an electro-optic polymer. The electro-optic polymer may include a host polymer and a second order nonlinear chromomophore, the host polymer and the chromophore both including aryl groups configured to interact with one another to provide enhanced thermal and/or temporal stability.
Abstract:
Techniques are generally described for detecting a concentration level of at least one gas. Some example devices may include a sensor including conductive plate on a surface of dielectric including a nanotube layer formed thereon. The conductive plate and the nanotube layer form a resonator that resonates at a frequency in response to an interrogation signal. The nanotube layer may be configured to associate with one or more gas molecules. The frequency at which the resonator resonates may shift according to which gas molecules are associated with the nanotube layer to identify a particular gas. An amount of resonance may be exhibited as a resonant response signal. An amplitude of the resonant response signal may be indicative of the concentration level of the detected gas.
Abstract:
Energy storage devices for storing energy are provided. An energy storage device includes a flywheel disposed in a chamber of a journal. A gas bearing is formed between an outer face of the flywheel and an inner face of the journal. The gas bearing exerts a compressive force on the flywheel, which allows for higher rotational velocities and higher energy storage.
Abstract:
Techniques are generally described for detecting a concentration level of at least one gas. Some example devices may include a sensor including conductive plate on a surface of dielectric including a nanotube layer formed thereon. The conductive plate and the nanotube layer form a resonator that resonates at a frequency in response to an interrogation signal. The nanotube layer may be configured to associate with one or more gas molecules. The frequency at which the resonator resonates may shift according to which gas molecules are associated with the nanotube layer to identify a particular gas. An amount of resonance may be exhibited as a resonant response signal. An amplitude of the resonant response signal may be indicative of the concentration level of the detected gas.
Abstract:
A scanned beam imager or laser scanner is operable to scan an object moving through its field-of-view. The system may include means for detecting direction and/or speed of the object. The velocity detection means may include sensors, an interface for receiving velocity information from other system elements, or image analysis that examines the skew, stretch, or compression in images. Responsive to object movement direction and speed, the scanned beam imager may alter its pixel capture rate and/or its scan rate to compensate. Alternatively or in combination, the imager may perform software-based image motion compensation. In some embodiments, the system may allow the image capture region to pace objects moving rapidly through its field-of-view.
Abstract:
A scanning endoscope, amenable to both rigid and flexible forms, scans a beam of light across a field-of-view, collects light scattered from the scanned beam, detects the scattered light, and produces an image. The endoscope may comprise one or more bodies housing a controller, light sources, and detectors; and a separable tip housing the scanning mechanism. The light sources may include laser emitters that combine their outputs into a polychromatic beam. Light may be emitted in ultraviolet or infrared wavelengths to produce a hyperspectral image. The detectors may be housed distally or at a proximal location with gathered light being transmitted thereto via optical fibers. A plurality of scanning elements may be combined to produce a stereoscopic image or other imaging modalities. The endoscope may include a lubricant delivery system to ease passage through body cavities and reduce trauma to the patient. The imaging components are especially compact, being comprised in some embodiments of a MEMS scanner and optical fibers, lending themselves to interstitial placement between other tip features such as working channels, irrigation ports, etc.