摘要:
A multi-stage compressor unit for a refrigeration system configured to circulate a refrigerant comprises a first compressor sub-unit having a first stage and a second stage, and a second compressor sub-unit in parallel with the first compressor sub-unit and having a first stage. The first and second stages of the first compressor sub-unit each have a suction port and a discharge port. The first compressor sub-unit is configured to receive and compress a first portion of the refrigerant from an evaporator. The first stage of the second compressor sub-unit is configured to compress a second portion of the refrigerant.
摘要:
A refrigeration system (20A) comprises an evaporator (27), a plurality of compressors (32, 34, 35) for compressing a refrigerant, a heat rejecting heat exchanger (24) for cooling the refrigerant, and a plurality of economizer heat exchangers (28A, 28B). Each of the economizer heat exchangers (28A, 28B) is configured to inject a portion of the refrigerant into a suction port (52, 56) of one of the compressors (34, 35).
摘要:
A refrigeration system (20A) comprises an evaporator (27), a two-stage compressor (32) for compressing a refrigerant, a second compressor (34) for compressing the refrigerant, a heat rejecting heat exchanger (24) for cooling the refrigerant, a first economizer circuit (25A), and a second economizer circuit (25B). The first economizer circuit (25A) is configured to inject refrigerant into an interstage port (48) of the two-stage compressor (32). The second economizer circuit (25B) is connected to the second compressor (34).
摘要:
A refrigeration system (20A) comprises an evaporator (27) for evaporating a refrigerant, a two-stage compressor (32) for compressing the refrigerant, a single-stage compressor (34) for compressing the refrigerant, a heat rejecting heat exchanger (24) for cooling the refrigerant, a first economizer circuit (25A), and a second economizer circuit (25B). The first economizer circuit (25A) is configured to inject refrigerant into an interstage port (48) of the two-stage compressor (32). The second economizer circuit (25B) is configured to inject refrigerant into a suction port (52) of the single-stage compressor (34). The single-stage compressor (34) is configured to discharge into the interstage port (48) of the two-stage compressor (32).
摘要:
A method for controlling temperature pulldown of an enclosure with a refrigeration system having a compressor, a heat rejecting heat exchanger, an expansion valve, and an evaporator comprises circulating a refrigerant through the refrigeration system, sensing a parameter of the enclosure, determining a desired evaporator pressure based upon the parameter sensed, and adjusting the expansion valve as a function of the desired evaporator pressure.
摘要:
A refrigerant vapor compression system includes a flash tank receiver disposed in the refrigerant circuit intermediate the refrigerant cooling heat exchanger and the refrigerant heating heat exchanger. The flash tank receiver, which receives a liquid/vapor refrigerant mix, also functions as a receiver. A refrigerant charge control apparatus includes at least one sensor for sensing an operating characteristic of the refrigerant circulating through the refrigerant compression device, and a controller operative to selectively adjust a secondary expansion device to increase or decrease the flow of refrigerant passing into the flash tank receiver to provide a circulating refrigerant charge consistent with maintaining a desired system operating characteristic. The sensed operating characteristic is at least one of (a) the vapor refrigerant passing through a refrigerant line from the flash tank receiver to an intermediate pressure stage of the compression device, and (b) the refrigerant discharged from the compression device.
摘要:
A refrigeration system (20A) comprises an evaporator (27), a two-stage compressor (32) for compressing a refrigerant, a second compressor (34) for compressing the refrigerant, a heat rejecting heat exchanger (24) for cooling the refrigerant, a first economizer circuit (25A), and a second economizer circuit (25B). The first economizer circuit (25A) is configured to inject refrigerant into an interstage port (48) of the two-stage compressor (32). The second economizer circuit (25B) is connected to the second compressor (34).
摘要:
A method for controlling temperature pulldown of an enclosure with a refrigeration system having a compressor, a heat rejecting heat exchanger, an expansion valve, and an evaporator comprises circulating a refrigerant through the refrigeration system, sensing a parameter of the enclosure, determining a desired evaporator pressure based upon the parameter sensed, and adjusting the expansion valve as a function of the desired evaporator pressure.
摘要:
A refrigerant vapor compression system includes a flash tank receiver disposed in the refrigerant circuit intermediate the refrigerant cooling heat exchanger and the refrigerant heating heat exchanger. The flash tank receiver, which receives a liquid/vapor refrigerant mix, also functions as a receiver. A refrigerant charge control apparatus includes at least one sensor for sensing an operating characteristic of the refrigerant circulating through the refrigerant compression device, and a controller operative to selectively adjust a secondary expansion device to increase or decrease the flow of refrigerant passing into the flash tank receiver to provide a circulating refrigerant charge consistent with maintaining a desired system operating characteristic. The sensed operating characteristic is at least one of (a) the vapor refrigerant passing through a refrigerant line from the flash tank receiver to an intermediate pressure stage of the compression device, and (b) the refrigerant discharged from the compression device.
摘要:
A refrigerant vapor compression system includes a flash tank receiver disposed in the refrigerant circuit intermediate the refrigerant cooling heat exchanger and the refrigerant heating heat exchanger. The flash tank receiver, which receives a liquid/vapor refrigerant mix, also functions as a receiver. A refrigerant charge control apparatus includes a liquid level sensing device disposed in operative association with the flash tank receiver for sensing the level of liquid refrigerant within the flash tank receiver, at least one sensor for sensing a system operating parameter, and a controller operative to determine a desired liquid refrigerant level within the flash tank receiver and to selectively adjust a secondary expansion device to increase or decrease the flow of refrigerant passing into the flash tank receiver to provide a circulating refrigerant charge consistent with maintaining a desired system operating parameter.