Abstract:
A system and method for dynamic adjustment of video images on a cathode ray tube in diverse geographic local magnetic fields. The present invention uses a CRT magnetometer that accurately senses differences in the strength and direction of a local magnetic field in three axes, i.e., the x, y, and z axes. The cathode ray tube includes a digital monitor board or monitor circuitry that has a processor and memory and is capable of retrieving correction factor data and magnetic correction data generated by a vision system. The digital monitor board receives CRT magnetometer signals and uses the signals with magnetic correction data to adjust the correction factor data to generate locale specific correction factor data for the sensed local magnetic field. The digital monitor board is capable of decoding the locale specific correction factor data using DACs, PDMs, PWMs, and interpolation engines to generate correction signals that are used to adjust the video image to correct for magnetically induced distortion.
Abstract:
A system for transforming coordinate systems in an automated video monitor alignment system includes a camera and computer to capture an image of the display bezel surrounding the cathode ray tube and of the image displayed on the CRT. Three dimensional models of the CRT tube and display bezel are used to compute and compensate for camera perspective. Camera pixel data can then be transformed to `flat plane` coordinates. When the relative orientation of the camera and CRT are corrected, the effects of parallax can be eliminated, allowing more accurate inspection, measurement, and lower cost fixturing on the production line. Thus, an accurate coordinate transformation from a camera-referenced coordinate system to a monitor-referenced coordinate system is made. Correction factors for correcting errors due to refraction can also be generated empirically in accordance with the present invention. Slope coordinate data is generated for a sample monitor for predetermined slope coordinate locations on the tube face. Correction signals can be generated from the slope coordinate data and measured tilt angles of the monitor relative to the vision system. Two dimensional interpolation techniques can be employed to provide slope coordinate values and correction signals for video signals that do not physically match the location of the slope coordinate locations of the sample monitor.
Abstract:
An electrical assembly which includes a first circuit member (e.g., TCM) with at least one conductive pin projecting therefrom for being frictionally and electrically engaged by a flexible portion of circuit means of a second circuit member (e.g., PCB). An opening is provided within the PCB relative to the flexible portions such that these portions project at least partly across the opening and frictionally engage respective conductive portions of the pin when inserted within the opening. Each of these flexible portions in turn is part of a circuit layer which may be coupled to respective conductive planes or the like within the PCB, while the respective conductive portions of the pin may in turn be electrically coupled to various conductive layers within/upon the TCM.
Abstract:
Dynamic adjustment techniques for aligning video images in cathode ray tube (CRT) devices are disclosed. A host computer stores correction factor data and video image data in video graphics controller RAM. The host computer processes and transmits the correction factor data, representative of the cathode ray tube distortion characteristics, to the CRT device during the retrace time of the electron beam and video image data during the trace time. The correction factor data may be generated by a vision system, a gain matrix table, interpolation engine or manual methods. Circuitry, within the CRT device, for separating the correction factor data from the video signal is disclosed along with the methods and apparatus used to decode correction data. Data can also be transferred from the monitor back to the host computer over the video connector.
Abstract:
A system for transforming coordinate systems in an automated video monitor alignment system includes a camera and computer to capture an image of the display bezel surrounding the cathode ray tube and of the image displayed on the CRT. Three dimensional models of the CRT tube and display bezel are used to compute and compensate for camera perspective. Camera pixel data can then be transformed to `flat plane` coordinates. When the relative orientation of the camera and CRT are corrected for, the effects of parallax can be eliminated, allowing more accurate inspection, measurement, and lower cost fixturing on the production line. Thus, an accurate coordinate transformation from a camera-referenced coordinate system to a monitor-referenced coordinate system is made.
Abstract:
A circuit within a video monitor for making corrections during horizontal scan includes a data storage device containing information relating to a selected display parameter, an integrator receptive of the stored information and adapted to produce an integrated signal therefrom, and an amplifier receptive of the integrated signal for supplying signals to the video monitor based on the integrated signal. The information supplied from the data storage device to the integrator is encoded in a pulse density modulated wave form via a tri-state gate and a one-shot timer. The information stored in the data storage device is stored in bytes, each byte containing a "sign bit" and a plurality of data bits.
Abstract:
An automatic precision video monitor alignment and calibration system is described which functions to precisely align all of the adjustable display characteristics of a video monitor to a high degree of precision. This alignment system can function in an automated calibration mode wherein it is independent of human input and automatically performs a series of alignment/calibration operations to precisely adjust all of the display characteristics of the video monitor in a fraction of the time required by a person to manually align the video monitor. The alignment system includes a digital control circuit located within the video monitor to precisely set and maintain each of the monitor display characteristics. The values maintained by this control circuit can be input by a person, or set automatically by a computer controlled display alignment system. The system of the present invention uses a single camera and a color analyzer to make all the measurements necessary to automatically align and calibrate a video monitor. The measurements are then used to make the adjustments, via the digital control circuit, necessary for alignment and/or calibration. A calibration computer coupled with a video coprocessor subsystem accomplish all adjustments to the monitor automatically, without the need for human intervention.
Abstract:
A method and apparatus used to step and correct the position of raster lines in a sinusoidal or zig-zag deflection system. By combining the magnetic flux generated with a rotation “twister” coil and a vertical deflection coil, scan lines can be uniformly spaced and separated nearly to their ends. Accordingly, the magnetic flux generated with the twister coil is adjusted going in the left to right direction then reversed in polarity and readjusted while returning from right to left. It is this controlled twister flux that combines with the linear vertical deflection flux to straighten and then step each scan line to produce an aligned raster.
Abstract:
An apparatus and method are disclosed for generating timing pulses to control various functions in a video monitor including the switching of video amplifiers in cathode ray tube (CRT) devices, the control of the phase and frequency of phase locked loops, etc. Unlike previous methods, where switching is timed and controlled by monitoring the retrace voltage level, the system of the present invention monitors the change in direction of current in the retrace tuning capacitor. Monitoring the retrace capacitor current, provides an extremely accurate method for timing in horizontal deflection circuits. The apparatus of the present the invention comprises a small bead inductor placed in the current path of a horizontal retrace capacitor within the horizontal deflection circuit of the cathode ray tube device. Measuring the voltage across the bead inductor allows a very precise monitoring of the current through the retrace tuning capacitor. By designing the size of the bead inductor as disclosed, precise electrical pulses can be generated and detected during the retrace time of the CRT electron beam. These precise pulses are then used to generate accurate control signals for use within the CRT device. The invention also discloses an apparatus and method that minimizes left side ringing distortion in cathode ray tube video displays. Left side ringing is reduced due to the addition of the bead inductor to the horizontal deflection circuit, which lowers the stray resonant frequency within the horizontal deflection circuit.
Abstract:
A circuit within a video monitor for making corrections during horizontal scan includes a data storage device containing information relating to a selected display parameter, an integrator receptive of the stored information and adapted to produce an integrated signal therefrom, and an amplifier receptive of the integrated signal for supplying signals to the video monitor based on the integrated signal. The information supplied from the data storage device to the integrator is encoded in a pulse density modulated wave form via a tri-state gate and a one-shot timer. The information stored in the data storage device is stored in bytes, each byte containing a "sign bit" and a plurality of data bits.