Abstract:
An abrasion resistant steel plate which possesses excellent abrasion resistance, excellent low-temperature toughness and excellent corrosive wear resistance. The abrasion resistant steel plate has the composition comprising by mass %: 0.10% to 0.20% C, 0.05% to 1.00% Si, 0.1% to 2.0% Mn, 0.020% or less P, 0.005% or less S, 0.005% to 0.100% Al, one or two kinds of components selected from a group consisting of 0.05% to 2.0% Cr and 0.05% to 1.0% Mo, and remaining Fe and unavoidable impurities as a balance. Content of solute Cr in steel (Crsol) and the content of solute Mo in steel (Mosol) satisfy the formula 0.05≥(Crsol+2.5Mosol)≥2.0. Steel plate has a structure where an as-quenched martensitic phase forms a main phase and a grain size of prior austenite grains is 30 μm or less, and surface hardness of the steel plate is 360 or more at Brinel hardness HBW10/3000.
Abstract:
An abrasion resistant steel plate which possesses excellent abrasion resistance, excellent low-temperature toughness and excellent corrosive wear resistance. The abrasion resistant steel plate includes the composition containing by mass %: 0.23% to 0.35% C, 0.05% to 1.00% Si, 0.1% to 2.0% Mn, 0.020% or less P, 0.005% or less S, 0.005% to 0.100% Al, 0.03% to 2.0% Cr, and 0.03% to 1.0% Mo in a state where DI* defined by the following formula (1) is satisfied 45 or more, and further containing remaining Fe and unavoidable impurities as a balance. The steel plate has a structure where an as-quenched martensitic phase forms a main phase and a grain size of prior austenite grains is 30 μm or less, and surface hardness of the steel plate is 450 or more at Brinel hardness HBW10/3000.
Abstract:
An abrasion resistant steel plate which possesses excellent abrasion resistance, excellent low-temperature toughness and excellent corrosive wear resistance. The abrasion resistant steel plate has the composition comprising by mass %: 0.10% to 0.20% C, 0.05% to 1.00% Si, 0.1% to 2.0% Mn, 0.020% or less P, 0.005% or less S, 0.005% to 0.100% Al, one or two kinds of components selected from a group consisting of 0.05% to 2.0% Cr and 0.05% to 1.0% Mo, and remaining Fe and unavoidable impurities as a balance. Content of solute Cr in steel (Crsol) and the content of solute Mo in steel (Mosol) satisfy the formula 0.05≧(Crsol+2.5Mosol)≧2.0. Steel plate has a structure where an as-quenched martensitic phase forms a main phase and a grain size of prior austenite grains is 30 μm or less, and surface hardness of the steel plate is 360 or more at Brinel hardness HBW10/3000.
Abstract:
A wear resistant steel plate that exhibits excellent impact wear resistant properties and that is suitable for use in construction machinery, shipbuilding, steel pipes or tubes, civil engineering, construction and so on, and a method for manufacturing the same. The wear resistant steel plate includes a specific steel composition, where DI* defined by Formula 1 is 100-250, and has a surface layer part containing 90% or more in area ratio of martensite, a Brinell hardness of 450 HBW 10/3000 or more, and a central part in thickness direction of the steel plate containing 70% or more in area ratio of lower bainite, the central part representing a zone extending from a ½ position of the steel plate thickness to distances of 0.5 mm toward both surfaces of the steel plate. DI*=33.85×(0.1×C)0.5×(0.7×Si+1)×(3.33×Mn+1)×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)×(3×Mo+1)×(1.75×V+1)×(1.5×W+1) Formula 1 where the symbols of elements represent the contents by mass % of the elements, respectively.
Abstract:
An abrasion resistant steel plate having excellent low-temperature toughness and excellent cracking resistance in a portion which has been heated to a temperature range in which low-temperature temper embrittlement occurs and a method for manufacturing the steel plate. The steel plate includes a microstructure at positions located at ¼ of the thickness and at ¾ of the thickness including a martensite single phase microstructure having an average prior austenaite grain diameter in the range of 20 μm to 60 μm, or a mixed microstructure of martensite and bainite having a proportion of martensite-austenite constituent of less than 5% in terms of area ratio with respect to the whole microstructure.
Abstract:
Abrasion resistant steel plates with excellent low-temperature toughness and hydrogen embrittlement resistance having a Brinell hardness of 401 or more, and methods for manufacturing such steel plates. The steel plates have a lath martensitic structure with an average grain size of not more than 20 μm, and the steel plates include fine precipitates that are 50 nm or less in diameter and that have a density of 50 or more particles per 100 μm2. Additionally, the steel plates include, by mass %, C: 0.20 to 0.30%, Si: 0.05 to 0.5%, Mn: 0.5 to 1.5%, Cr: 0.05 to 1.20%, Nb: 0.01 to 0.08%, B: 0.0005 to 0.003%, Al: 0.01 to 0.08%, N: 0.0005 to 0.008%, P: not more than 0.05%, S: not more than 0.005%, and O: not more than 0.008%, the balance being Fe and inevitable impurities.
Abstract:
Abrasion resistant steel plates with excellent low-temperature toughness having a Brinell hardness of 361 or more, and methods for manufacturing such steel plates. The steel plates have a lath martensitic structure with an average grain size of not more than 20 μm, and the steel plates include fine precipitates that are 50 nm or less in diameter and that have a density of 50 or more particles per 100 μm2. Additionally, the steel plates include, by mass %, C: 0.10 to less than 0.20%, Si: 0.05 to 0.5%, Mn: 0.5 to 1.5%, Cr: 0.05 to 1.20%, Nb: 0.01 to 0.08%, B: 0.0005 to 0.003%, Al: 0.01 to 0.08%, N: 0.0005 to 0.008%, P: not more than 0.05%, S: not more than 0.005%, and O: not more than 0.008%, the balance being Fe and inevitable impurities.
Abstract:
A wear resistant steel plate that exhibits excellent impact wear resistant properties and that is suitable for use in construction machinery, shipbuilding, steel pipes or tubes, civil engineering, construction and so on, and a method for manufacturing the same. The wear resistant steel plate includes a specific steel composition, where DI* defined by Formula 1 is 100-250, and has a surface layer part containing 90% or more in area ratio of martensite, a Brinell hardness of 450 HBW 10/3000 or more, and a central part in thickness direction of the steel plate containing 70% or more in area ratio of lower bainite, the central part representing a zone extending from a ½ position of the steel plate thickness to distances of 0.5 mm toward both surfaces of the steel plate. DI*=33.85×(0.1×C)0.5×(0.7×Si+1)×(3.33×Mn+1)×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)×(3×Mo+1)×(1.75×V+1)×(1.5×W+1) Formula 1 where the symbols of elements represent the contents by mass % of the elements, respectively.
Abstract:
An object of the present invention is to provide an Ni-containing steel plate which is low in cost and has excellent low-temperature toughness. In view of the object, the Ni-containing steel plate of the present invention has a chemical composition containing by mass % C: 0.01% to 0.15%, Si: 0.02% to 0.20%, Mn: 0.45% to 2.00%, P: 0.020% or less, 5: 0.005% or less, Al: 0.005% to 0.100% Ni: 5.0 to 8.0%, and the balance being Fe and incidental impurities, and has a microstructure containing less than 1.7% by volume fraction of retained austenite when cooled to liquid nitrogen temperature, and having an average grain size of crystal grains surrounded by high-angle grain boundaries with an orientation difference of 15° or more of 5 μm or less by equivalent circle diameter.