Abstract:
A method of using a tool for punching orifice that has wall surfaces extending at an angle relative to a generally planar surface of a workpiece. The method includes sequentially forming two spaced apart impressions formed in the workpiece between first and second generally planar surfaces spaced apart along a longitudinal axis of the workpiece. The two spaced apart impressions form a first orifice wall surface disposed at an obtuse angle with respect to the generally planar surface facing the tool and a second orifice wall surface disposed at an acute angle with respect to the generally planar surface, and coincidental with the punching process, a retention arrangement that secures the workpiece during the forming of the orifice.
Abstract:
A method and assembly for punching a hole in material provided. A magnetostrictive device 14 includes a coil 26, a magnetostrictive member 22, and a punch 28 operatively associated with the magnetostrictive member 22. The magnetostrictive member 22 is constructed and arranged to lengthen, when exposed to a magnetic field created by the coil 26, thereby moving the punch 28. Material 12 to be punched is associated with the punch 28. The coil is energized to create a magnetic field and thus lengthen the magnetostrictive member 22 so that the punch 28 moves through the material 12, creating a hole in the material 12.
Abstract:
A fuel injector includes a metering orifice disc. The metering orifice disc includes a peripheral portion, a central portion, and an orifice. The peripheral portion is with respect to a longitudinal axis and extends parallel to a base plane. The peripheral portion bounds the central portion. The central portion includes a facet that extends parallel to a plane that is oblique with respect to the base plane. The orifice penetrates the facet and extends along an orifice axis that is oblique with respect to the plane. As such, the orientation of the orifice with respect to the longitudinal axis is defined by a combination of (1) a first relationship of the plane with respect to the base plane, and (2) a second relationship of the orifice axis with respect to the plane. A method of forming a multi-facetted dimple for the metering orifice disc is also described.
Abstract:
A dual stream thin edge orifice disk is defined as a disk having a pair of orifices positioned to direct the flow of fluid from the interior portion of a valve into two different streams. The dual streams may be parallel or typically diverge at an angle for directing the stream to two adjacent engine valves in the situation wherein the valve is an electromagnetic fuel injector for an internal combustion engine. To have the dual streams flow in a direction that is not parallel, the area of the disk surrounding the dual orifices is embossed and the orifices are positioned along the sides of the embossment between the base and the apex thereof. The manufacturing of the accurately sized orifices in the disk is accomplished by means of a progressive die. One of the stations of the die provides a coining operation on the orifice. Such coining operation is adjustable by means of a micrometer adjustment. Another of the stations provides a forming operation wherein an embossment is formed in such a manner that the orifices are positioned on the sides of the embossment between the base and the apex. In another embodiment of a valve, a pair of dual orifice disks are position adjacent each other with the orifices of the first disk overlapping the orifices of the second disk.
Abstract:
An apparatus and method for piercing a metering disc from a workpiece of a fuel injector. The metering disc includes first and second surfaces that extend substantially parallel to a base plane. The first and second surfaces are spaced along a longitudinal axis that extends orthogonal with respect to the base plane. The apparatus includes a piercing tool that extends along a tool axis, a planar coordinate positioning mechanism, and a spherical coordinate positioning mechanism. The piercing tool is adapted to penetrate the workpiece. The planar coordinate positioning mechanism displaces parallel to the longitudinal axis of the piercing tool relative to the workpiece. And the spherical coordinate positioning mechanism pivots about the tool axis relative at least one of three axes.
Abstract:
A punch tool for punching orifice that has wall surfaces extending at an angle relative to a generally planar surface of a workpiece. The punch tool of the preferred embodiments is provided with configurations that, at the very least, increase the life of the tool, reduce damages to the workpiece during punching in the formation of the angled orifices.
Abstract:
A fuel injector includes a seat, a movable member cooperating with the seat, and an orifice plate. The metering orifice disc includes a member having first and second generally parallel surfaces, and an orifice penetrating the member. The first surface generally faces the seat and represents the fuel entry side. The second surface faces opposite the first surface and represents the fuel exit side. The orifice is defined by a wall that couples the first and second surfaces. And the wall includes first and second portions. The first portion is spaced from the first surface and extends generally parallel to a longitudinal axis. The second portion couples the first portion to the first surface and extends at a first oblique angle that varies with respect to the first surface.
Abstract:
A method and apparatus for defining a spray pattern to reduce the variation in the metering, targeting, distribution, and atomization of the fuel output of a fuel injector. The fuel injector contains a closure member extending along the longitudinal axis of the injector. The closure member can be positioned contiguous to a seat to occlude fuel flow. A sealing radius is defined when the closure member is in this position. The closure member can also be positioned such that it is not contiguous to the seat, thereby permitting fuel flow. A plate is disposed proximate to the seat with a first and second face, the first face facing the seat. An inlet is located on the first face of the plate, and at least one chamber is disposed on the second face of the plate. The inlet and the at least one chamber are in fluid communication. An orifice disc is disposed in a confronting arrangement with the second face of the plate such that each chamber is located proximal to each orifice. The orifice disc is positioned such that its axis is generally coincident with the longitudinal axis of the fuel injector. At least one orifice is located at a second radius from the axis of the orifice disc, wherein the second radius is greater than the sealing radius.
Abstract:
A dual stream thin edge orifice disk is defined as a disk having a pair of orifices positioned to direct the flow of fluid from the interior portion of a valve into two different streams. The dual streams may be parallel or typically diverge at an angle for directing the stream to two adjacent engine valves in the situation wherein the valve is an electromagnetic fuel injector for an internal combustion engine. To have the dual stream flow in a direction that is not parallel, the area of the disk surrounding the dual orifices is embossed and the orifices are positioned along the sides of the embossment between the base and the apex thereof. The manufacturing of the accurately sized orifices in the disk is accomplished by means of a progressive die. One of the stations of the die provides a coining operation on the orifice. Such coining operation is adjustable by means of a micrometer adjustment. Another of the stations provides a forming operation wherein an embossment is formed in such a manner that the orifices are positioned on the sides of the embossment between the base and the apex. In another embodiment of a valve, a pair of dual orifice disks are position adjacent each other with the orifices of the first disk overlapping the orifices of the second disk.
Abstract:
A fuel injector includes a seat, a movable member cooperating with the seat, and an orifice plate. The orifice plate includes a member and an orifice penetrating the member. The member includes first and second generally parallel surfaces. The first surface generally confronts the valve seat, and the second surface faces opposite the first surface. The orifice is defined by a wall that couples the first and second surfaces. The wall includes a first portion that extends from the first surface and a second portion extending between the first portion and the second surface. The first portion of the wall extends at a first oblique angle with respect to the first surface, and the first oblique angle varies so as to define an asymmetrical chamfer. The second portion of the wall defines a cylinder extending along an axis at a second oblique angle with respect to the second surface.