Abstract:
A computer determines the cost and risk of assets. The computer analyzes an asset signature, associated with an asset representing a fundamental structural unit of an information technology environment, to determine that the asset is in a non-normal state. The computer determines the cost of the asset by evaluating a price formula associated with the asset signature of the asset, and the computer determines the risk of the asset by evaluating a risk formula associated with the asset signature of the asset. The computer maintains a configuration item for the asset, indicating the state, the risk, and the cost of the asset. One or both of the risk and the cost of the asset are used to determine the priority of recovering the asset.
Abstract:
Hardware resources in a virtualized environment are managed. Via at least one processor external to a physical host that hosts a plurality of virtual machines, resource statistics are received pertaining to hardware resources of the physical host that are allocated to each of the plurality of virtual machines. External to the physical host and in real time, the resource statistics are analyzed to determine whether allocation of the hardware resources to each of the plurality of virtual machines is optimized. When the allocation of the hardware resources to at least one of the virtual machines is not optimized, in real time, at least one resource allocation message is communicated to the physical host, the resource allocation message indicating at least one hardware resource that is to be allocated to, or de-allocated from, the at least one virtual machine.
Abstract:
Managing virtual machines includes determining an operating parameter of a device during operation of the device as part of a cluster of devices while the device hosts a virtual machine and comparing, using a processor, a requirement for the virtual machine with the operating parameter. A view of the virtual machine operating within the device of the cluster can be displayed. A result of the comparison can be indicated through application of a visualization technique to an identifier representing the virtual machine within the view.
Abstract:
Managing virtual machines includes determining an operating parameter of a device during operation of the device as part of a cluster of devices while the device hosts a virtual machine and comparing, using a processor, a requirement for the virtual machine with the operating parameter. A view of the virtual machine operating within the device of the cluster can be displayed. A result of the comparison can be indicated through application of a visualization technique to an identifier representing the virtual machine within the view.
Abstract:
Hardware resources in a virtualized environment are managed. Via at least one processor external to a physical host that hosts a plurality of virtual machines, resource statistics are received pertaining to hardware resources of the physical host that are allocated to each of the plurality of virtual machines. External to the physical host and in real time, the resource statistics are analyzed to determine whether allocation of the hardware resources to each of the plurality of virtual machines is optimized. When the allocation of the hardware resources to at least one of the virtual machines is not optimized, in real time, at least one resource allocation message is communicated to the physical host, the resource allocation message indicating at least one hardware resource that is to be allocated to, or de-allocated from, the at least one virtual machine.
Abstract:
A method of allocating cloud resources. A user interface can be presented to a user. The user interface can be configured to receive a user selection of a change of context for at least one of a plurality of workloads allocated to at least one cloud. Responsive to receiving the user selection of the change of context for the workload, via a processor, a service level agreement applicable to the workload can be dynamically changed from a first service level agreement to a second service level agreement, while the workload remains in an available state.
Abstract:
Managing virtual machines includes determining an operating parameter of a device during operation of the device as part of a cluster of devices while the device hosts a virtual machine and comparing, using a processor, a requirement for the virtual machine with the operating parameter. A view of the virtual machine operating within the device of the cluster can be displayed. A result of the comparison can be indicated through application of a visualization technique to an identifier representing the virtual machine within the view.
Abstract:
A method of allocating cloud resources. A user interface can be presented to a user. The user interface can be configured to receive a user selection of a change of context for at least one of a plurality of workloads allocated to at least one cloud. Responsive to receiving the user selection of the change of context for the workload, via a processor, a service level agreement applicable to the workload can be dynamically changed from a first service level agreement to a second service level agreement, while the workload remains in an available state.
Abstract:
A set of asset signatures can be analyzed. Each asset signature can be associated with an asset. Derelict assets can be discovered based on the asset signatures. The asset can represent a fundamental structural unit of an information technology (IT) environment. A multi-stage screening process can be performed to discover derelict assets. In a first stage, assets having a normal state are able to be changed to a suspect state based on results of analyzing the corresponding asset signature. In a second stage, assets having a suspect state are able to be selectively changed in state to a normal state or to a derelict state. An asset management system record can be maintained for each of the set of assets. Each record of the asset management system can be a configuration item (CI), which indicates whether each of the set of assets is in a normal state, a suspect state, or a derelict state. The asset management system can periodically reclaim resources consumed by derelict assets.