Abstract:
Embodiments provide an amplification circuit, an apparatus for amplifying, a low noise amplifier, a radio receiver, a mobile terminal, a base station, and a method for amplifying. An amplification circuit for amplifying a radio signal comprises a first amplification stage configured to amplify an input signal, Vin(t), to obtain an intermediate signal. The amplification circuit further comprises a cascoding circuit configured to amplify the intermediate signal to obtain a first output signal Voutn(t). The amplification circuit further comprises a second amplification stage configured to amplify the intermediate signal to obtain a second output signal, Voutp(t).
Abstract:
Embodiments provide an amplification circuit, an apparatus for amplifying, a low noise amplifier, a radio receiver, a mobile terminal, a base station, and a method for amplifying. An amplification circuit (10) for amplifying a radio signal comprises a first amplification stage (12) configured to amplify an input signal, Vin(t), to obtain an intermediate signal. The amplification circuit (10) further comprises a cascoding circuit (14) configured to amplify the intermediate signal to obtain a first output signal Voutn(t). The amplification circuit (10) further comprises a second amplification stage (16) configured to amplify the intermediate signal to obtain a second output signal, Voutp(t).
Abstract:
An apparatus for generating base band receive signals includes a first analog-to-digital converter module generating a first digital high frequency receive signal at least by sampling a first analog high frequency receive signal, a first digital signal processing module generating a first base band receive signal based on the first digital high frequency receive signal, a second analog-to-digital converter module generating a second digital high frequency receive signal at least by sampling a second analog high frequency receive signal and a second digital signal processing module generating a second base band receive signal based on the second digital high frequency receive signal. The first analog high frequency receive signal comprises first payload data at a first receive channel associated with a first carrier frequency and the second analog high frequency receive signal comprises second payload data at a second receive channel associated with a second carrier frequency.
Abstract:
Embodiments provide an amplification circuit, an apparatus for amplifying, a low noise amplifier, a radio receiver, a mobile terminal, a base station, and a method for amplifying. An amplification circuit (10) for amplifying a radio signal comprises a first amplification stage (12) configured to amplify an input signal, Vin(t), to obtain an intermediate signal. The amplification circuit (10) further comprises a cascoding circuit (14) configured to amplify the intermediate signal to obtain a first output signal Voutn(t). The amplification circuit (10) further comprises a second amplification stage (16) configured to amplify the intermediate signal to obtain a second output signal, Voutp(t).
Abstract:
An apparatus for generating base band receive signals includes a first analog-to-digital converter module generating a first digital high frequency receive signal at least by sampling a first analog high frequency receive signal, a first digital signal processing module generating a first base band receive signal based on the first digital high frequency receive signal, a second analog-to-digital converter module generating a second digital high frequency receive signal at least by sampling a second analog high frequency receive signal and a second digital signal processing module generating a second base band receive signal based on the second digital high frequency receive signal. The first analog high frequency receive signal comprises first payload data at a first receive channel associated with a first carrier frequency and the second analog high frequency receive signal comprises second payload data at a second receive channel associated with a second carrier frequency.