Abstract:
The present invention relates to an antibody or antibody fragment that binds to 1,4,7,10-tetrazacyclododecane-N,Nnull,Nnull,Nnullnull-tetraacetic acid (DOTA),which is bound to an alkyl-amino group through one of its pendant carb.oxyl groups.
Abstract:
The invention relates to therapeutic conjugates with improved ability to target various cancer cells containing a targeting moiety and a therapeutic moiety. The targeting and therapeutic moieties are linked via an acid cleavable linkage that increases therapeutic efficacy of the immunoconjugate.
Abstract:
Methods are described for conjugating radioiodinated peptides to non-metabolizable carbohydrates with improved yields and qualities of conjugates. Radioiodinated residualizing antibody conjugates comprising a carbohydrate-appended peptide are also provided. The instant radioiodinated residualizing antibody conjugates are particularly stable in vivo and are suitable for radioimmunodetection and radioimmunotherapy.
Abstract:
The invention relates to a method for treating target cells, tissues or pathogens in a subject, comprising administering a non-covalently bound complex which comprises a multispecific targeting protein and a hapten-enzyme covalent conjugate. The invention further relates to kits comprising the non-covalently bound complex or the components to prepare the complex.
Abstract:
Methods are described for conjugating radioiodinated peptides or carbohydrate structures to proteins with improved yields and qualities of conjugates. In one method, specially designed radioiodinated bifunctional peptides containing nonmetabolizable amide bonds are coupled to antibodies. In a second method, radioiodinated nonmetabolizable bifunctional peptides, which also contain aminopolycarboxylates, are coupled to antibodies. In a third method, radioiodinated bifunctional aminopolycarboxylates are coupled to antibodies. In a fourth method, a hydrazide-appended antibody is coupled to a radioiodinated carbohydrate or a thiolated antibody is coupled to a hydrazide-appended and radioiodinated carbohydrate. In a fifth method a monoderivatized cyanuric chloride is used to conjugate thiolated antibody. Radioiodinated residualizing antibody conjugates made by these methods are particularly stable in vivo and are suitable for radioimmunodetection and radioimmunotherapy.
Abstract:
Methods are described for conjugating radioiodinated non-metabolizable peptides to proteins and antibodies with improved yields and qualities of conjugates. Radioiodinated residualizing antibody conjugates comprising any aminopolycarboxylate-appended peptide, or any carbohydrate-appended peptide, are also provided. Additionally, methods are described for conjugating radioiodinated aminopolycarboxylates to proteins and antibodies, as well as for conjugating radioiodinated non-metabolizable carbohydrates to proteins and antibodies by a variety of chemical approaches. The instant radioiodinated residualizing antibody conjugates are particularly stable in vivo and are suitable for radioimmunodetection and radioimmunotherapy.
Abstract:
Methods are described for conjugating radioiodinated peptides or carbohydrate structures to proteins with improved yields and qualities of conjugates. In one method, specially designed radioiodinated bifunctional peptides containing nonmetabolizable amide bonds are coupled to antibodies. In a second method, radioiodinated nonmetabolizable bifunctional peptides, which also contain aminopolycarboxylates, are coupled to antibodies. In a third method, radioiodinated bifunctional aminopolycarboxylates are coupled to antibodies. In a fourth method, a hydrazide-appended antibody is coupled to a radioiodinated carbohydrate or a thiolated antibody is coupled to a hydrazide-appended and radioiodinated carbohydrate. In a fifth method a monoderivatized cyanuric chloride is used to conjugate thiolated antibody. Radioiodinated residualizing antibody conjugates made by these methods are particularly stable in vivo and are suitable for radioimmunodetection and radioimmunotherapy.