Digital encoder and method of encoding

    公开(公告)号:US10855505B2

    公开(公告)日:2020-12-01

    申请号:US15673902

    申请日:2017-08-10

    Abstract: An encoder architecture for UF-OFDM is provided, in which samples are first processed sub-band wise, and then resorted for sub-carrier-wise processing. The sub-carrier processing may comprise separate processing for the two extremity parts of the base band signal corresponding to the transient state of the UF-OFDM data stream and for a core part of the base band signal corresponding to the non-transient state of the UF-OFDM data stream, and then concatenated to obtain a UF-OFDM data stream. In certain embodiments a first extremity part of the base band signal corresponding to the transient state of the UF-OFDM data stream is calculated directly, and the other extremity part inferred from the core part and the first extremity part. The core and extremity part processors may be implemented with filters adapted to multiply each sample by a respective filter coefficient. Modifying these coefficients can introduce a frequency shift or convert the encoder for OFDM encoding.

    Method and apparatus for power and user distribution to sub-bands in NOMA systems

    公开(公告)号:US10257791B2

    公开(公告)日:2019-04-09

    申请号:US15652644

    申请日:2017-07-18

    Abstract: Power allocation in NOMA systems for example on the basis Proportional Fairness calculations depends on knowledge of user throughput on a specified sub-band, which implies that users have already been allocated to particular sub-bands. Meanwhile, maximum throughput can generally be achieved where there is the greatest possible difference in transmission power for the users on a given sub-band, so that optimal allocation of users to sub-bands requires knowledge of the power available for each user. A mechanism is proposed based on iteratively applying a waterfilling algorithm to distribute power across a progressive subset of sub-bands to provisionally distribute the power budget across that subset of sub-bands, where at each iteration the water filling algorithm is carried out for each possible combination of users assignable to the newly considered sub-band using a floor for that sub band proportional to the reciprocal of the square of the highest channel gain value of any user in that combination, and calculating a throughput for that combination with the corresponding power attribution, whereby the combination retained for the next iteration (with an additional sub-band) is whichever gives the highest throughput. This process is thus repeated until users are assigned to all sub-bands, whereupon power allocations from the last iteration are definitive.

    Receiver architecture for linear modulation based communication systems

    公开(公告)号:US10396847B2

    公开(公告)日:2019-08-27

    申请号:US15620208

    申请日:2017-06-12

    Abstract: A receiver for Filter Bank Multicarrier frequency spread signals such as FBMC, FBMC/OQAM, OFDM, comprises a linear phase rotation module adapted to introduce a linear phase rotation to a received time domain signal, a discrete Fourier transform and a Finite Impulse response digital filter. The coefficients of the digital filter define a shift of the frequency response of the prototype filter of the receiver, and the coefficients of the digital filter are fixed so as to compensate the linear phase rotation introduced by the filter. The frequency shift introduced may be equal to the reciprocal of a power of two of the modulation sub carrier spacing.

Patent Agency Ranking