Abstract:
A guiding system and a guiding method for ultrasound scanning operation are provided. The guiding system includes a handheld guiding device, a display device, an ultrasound scanning device, a prompting device, and a control host. When the handheld guiding device generates a first physical motion, the control host detects the first physical motion and generates navigation prompting information accordingly. The prompting device is suitable for presenting the navigation prompting information to guide the ultrasound scanning device to move to generate a second physical motion. The control host captures an ultrasound image via the ultrasound scanning device and sends the ultrasound image to the display device at a guiding end for display.
Abstract:
A guiding system and a guiding method for ultrasound scanning operation are provided. The guiding system includes a handheld guiding device, a display device, an ultrasound scanning device, a prompting device, and a control host. When the handheld guiding device generates a first physical motion, the control host detects the first physical motion and generates navigation prompting information accordingly. The prompting device is suitable for presenting the navigation prompting information to guide the ultrasound scanning device to move to generate a second physical motion. The control host captures an ultrasound image via the ultrasound scanning device and sends the ultrasound image to the display device at a guiding end for display.
Abstract:
An ultrasound imaging system includes a beam receiving circuit and a back-end circuit. The beam receiving circuit receives a plurality of digitized echo signals. The back-end circuit is coupled to the beam receiving circuit for outputting a plurality of compressed delay timing parameters corresponding to a plurality of channels to the beam receiving circuit. The beam receiving circuit decompresses the compressed delay timing parameters into a plurality of delay timing parameters, and processes the digitized echo signals into an ultrasound beamforming value according to the delay timing parameters corresponding to the channels. The back-end circuit synthesizes an ultrasound image according to the ultrasound beamforming value outputted from the beam receiving circuit.
Abstract:
Systems and methods for measuring flow velocities, including ultrasound systems, are provided. A Doppler angle between a direction of ultrasound signals and an axis of a flow may be estimated to improve the accuracy of the flow velocity estimation that is based on Doppler effects. A sensor may be mounted on or in an ultrasound probe to obtain a reference orientation of the ultrasound probe and an orientation of the ultrasound probe relative to the reference orientation when the ultrasound probe is moved to other positions. The Doppler angle may be estimated based on the orientation of the ultrasound probe.