Abstract:
A DC conversion circuit in the disclosure includes a buck-boost converter and a resonant stage circuit. The buck-boost converter has two input ends, a negative output end and a positive output end. The buck-boost converter receives a first DC signal via its two input ends, and outputs a second DC signal via its two output ends. The resonant stage circuit has two input ends and two output ends. The resonant stage circuit receives the second DC signal via its two input ends, converts the second DC signal into energy for power charging, and outputs the energy to a load via its two output ends. Then, the resonant stage circuit converts the energy, which is used for power charging, to form a negative voltage by a resonance effect, and outputs the energy to the load via its two output ends.
Abstract:
A dimming system comprises a controller and an AC-to-DC converter. The controller outputs a control signal in response to a dimming signal. The controller comprises a frequency adjustment circuit and a duty cycle adjustment circuit. The frequency adjustment circuit adjusts the frequency of the control signal in response to the dimming signal. The duty cycle adjustment circuit adjusts the duty cycle of the control signal in response to the dimming signal. The AC-to-DC converter converts an external power and to output a DC signal in response to the control signal so as to drive a light source by the DC signal. When the controller is operated at a first mode, the control signal has a first frequency and a first duty cycle. When the controller switches to a second mode, the control signal has a second frequency and a second duty cycle.
Abstract:
A linear driving module includes: a control circuit, a dimming module, and a low-dropout regulator. The control circuit generates switch signals in response to a change in a pulsed DC voltage. The dimming module receives the pulsed DC voltage. The dimming module includes dimming units. Light-emitting diode units in the dimming units are in a light-on state or a light-off state. The low-dropout regulator receives an input voltage from the dimming unit, and converts the input voltage into a regulated voltage. The input voltage varies with the number of light-emitting diode units in the light-on state. The input voltage is lower than the pulsed DC voltage, and the regulated voltage is lower than the input voltage.
Abstract:
A voltage converter is connected with a load. The voltage converter includes a power source, a first switching element, a second switching element, an energy storage inductor, an energy storage capacitor and N capacitor modules. The first switching element is connected between a first terminal of the power source and a first node. The second switching element is connected between the first node and a second node. A second terminal of the power source is connected with the second node. The energy storage inductor is connected between the first node and the third node. The N capacitor modules are connected between the third node and a fourth node, wherein N is a positive integer. The energy storage capacitor is connected between the fourth node and the second node.
Abstract:
A direct current (DC) conversion circuit suitable for driving a load comprises a buck-boost converter, a resonant stage circuit and an output stage circuit. The buck-boost converter has two input ends receiving a first DC signal, and two output ends outputting a second DC signal. The resonant stage circuit has two input ends receiving the second DC signal. The resonant stage circuit converts the second DC signal to energy and further converts the energy to a negative voltage by a resonance effect. The resonant stage circuit has two input ends outputting the energy. The output stage circuit has two input ends receiving the energy to store the energy, and two output ends outputting energy to the load.
Abstract:
A direct current (DC) conversion circuit suitable for driving a load comprises a buck-boost converter, a resonant stage circuit and an output stage circuit. The buck-boost converter has two input ends receiving a first DC signal, and two output ends outputting a second DC signal. The resonant stage circuit has two input ends receiving the second DC signal. The resonant stage circuit converts the second DC signal to energy and further converts the energy to a negative voltage by a resonance effect. The resonant stage circuit has two input ends outputting the energy. The output stage circuit has two input ends receiving the energy to store the energy, and two output ends outputting energy to the load.
Abstract:
A linear driving module includes: a control circuit, a dimming module, and a low-dropout regulator. The control circuit generates switch signals in response to a change in a pulsed DC voltage. The dimming module receives the pulsed DC voltage. The dimming module includes dimming units. Light-emitting diode units in the dimming units are in a light-on state or a light-off state. The low-dropout regulator receives an input voltage from the dimming unit, and converts the input voltage into a regulated voltage. The input voltage varies with the number of light-emitting diode units in the light-on state. The input voltage is lower than the pulsed DC voltage, and the regulated voltage is lower than the input voltage.
Abstract:
In driving a segmented LED loading, an alternating current (AC) voltage is rectified into a direct current (DC) voltage; the DC voltage is regulated into an input voltage and the input voltage is maintained higher than a lowest voltage used for lighting at least one LED segment of the segmented LED loading; the input voltage and a current flowing through the segmented LED loading is detected to generate a switch control signal and a current control signal; respective operation states of each of a plurality of switches of a LED segment switch module are controlled by the switch control signal to control each LED segment of the segmented LED loading as power-supply state or no-power-supply state; and the current of the segmented LED loading is regulated based on the current control signal.
Abstract:
A dimming system comprises a controller and an AC-to-DC converter. The controller outputs a control signal in response to a dimming signal. The controller comprises a frequency adjustment circuit and a duty cycle adjustment circuit. The frequency adjustment circuit adjusts the frequency of the control signal in response to the dimming signal. The duty cycle adjustment circuit adjusts the duty cycle of the control signal in response to the dimming signal. The AC-to-DC converter converts an external power and to output a DC signal in response to the control signal so as to drive a light source by the DC signal. When the controller is operated at a first mode, the control signal has a first frequency and a first duty cycle. When the controller switches to a second mode, the control signal has a second frequency and a second duty cycle.
Abstract:
A passive power factor correction circuit includes: a DC capacitor and an input capacitor, coupled to a rectifying circuit and charged by a DC voltage from the rectifying circuit; an output capacitor, coupled to a load; first diode and a second diode, coupled to the input capacitor and the output capacitor; and an inductor, coupled to the load, the input capacitor and the output capacitor. Charging into and discharging from the DC capacitor are completed within a half cycle of an input AC voltage.