摘要:
Embodiments hereof are directed to a haptic device having a pressure-sensitive suspension system. The haptic device includes a housing, a touch surface component mounted to the housing to be movable relative thereto, and a haptic actuator for providing haptic feedback to the touch surface component. At least one suspension component is disposed between the touch surface component and the housing. The suspension component is formed from an elastomer and includes pressure-sensing particles integrated into the elastomer. The pressure-sensing particles are configured to sense pressure applied to the touch surface component.
摘要:
A method includes displaying information via a first display, displaying information via a second display, controlling the information displayed via the first display and the second display with a controller, and receiving a first input from a user through a user interface. The first input includes a command to change a setting of the first display or the second display and/or the information being displayed via the first display or the second display. The method also includes generating a first haptic effect to confirm receipt of the first input.
摘要:
A method includes displaying information via a first display, displaying information via a second display, controlling the information displayed via the first display and the second display with a controller, and receiving a first input from a user through a user interface. The first input includes a command to change a setting of the first display or the second display and/or the information being displayed via the first display or the second display. The method also includes generating a first haptic effect to confirm receipt of the first input.
摘要:
One illustrative electrostatic actuator disclosed herein includes a first electrode, a second electrode, a first insulation layer between the first electrode and the second electrode, a first resilient material between the first electrode and the second electrode, a third electrode, a second insulation layer between the second electrode and the third electrode, and a second resilient material between the second electrode and the third electrode. The first electrode and the third electrode receive power from a power supply and responsively generate a first polarity. The second electrode receives power from the power supply and responsively generates a second polarity that is opposite the first polarity. The first polarity and the second polarity generate a first attractive force between the first electrode and the second electrode and a second attractive force between the second electrode and the third electrode. The electrostatic actuator may be part of a user interface.
摘要:
A wearable device may be configured to generate feedback based on an event that occurs in an environment related to the wearable device. The wearable device may include, for example, a processor configured to generate a control signal representative of an event occurring in an environment related to the wearable device and at least a first haptic output device disposed at a first position at the wearable device. The first haptic output device may be configured to provide haptic feedback based on the generated control signal.
摘要:
One illustrative system disclosed herein includes a processor configured to determine a haptic effect, wherein the haptic effect includes a static ESF effect or a confirmation ESF effect; and transmit a haptic signal associated with the haptic effect. The illustrative system also includes an ESF controller in communication with the processor, the ESF controller configured to receive the haptic signal, determine an ESF signal based at least in part on the haptic signal, and transmit the ESF signal. The illustrative system further includes an ESF device in communication with the ESF controller, the ESF device including an ESF cell and configured to receive the ESF signal and output the haptic effect.
摘要:
Haptic feedback is provided by rendering haptic effects on a haptically-enabled device that includes a front screen, a back cover coupled to the front screen, and a haptic output device attached to or formed within the front screen or the back cover. The haptic output device is configured to render a high-definition (HD) vibratory haptic effect, a low-frequency vibratory haptic effect, and a deformation haptic effect.
摘要:
One illustrative system disclosed herein includes a processor configured to determine a haptic effect, wherein the haptic effect includes a static ESF effect or a confirmation ESF effect; and transmit a haptic signal associated with the haptic effect. The illustrative system also includes an ESF controller in communication with the processor, the ESF controller configured to receive the haptic signal, determine an ESF signal based at least in part on the haptic signal, and transmit the ESF signal. The illustrative system further includes an ESF device in communication with the ESF controller, the ESF device including an ESF cell and configured to receive the ESF signal and output the haptic effect.
摘要:
Systems and methods for minimal haptic implementation are disclosed. For example, one disclosed system includes: an actuator; and a control-circuit in communication with the actuator, the control circuit configured to: receive a haptic signal including a first bit indicating a power state; and transmit a power signal based on the haptic signal, the power signal configured to cause the actuator to operate at an actuation state at a fixed power.
摘要:
An electronic device includes a touch screen configured to receive an input from a user, and a haptic device that includes a piezoelectric actuator including an elongated piezo bender having a mass at one end thereof and supported by a flexible holder at the other end thereof, and an electrical driving signal generator configured to generate a signal to create a vibration in the elongated piezo bender in response to the input from the user.