Abstract:
An image forming apparatus is configured to reduce a velocity fluctuation of a rotating body by reducing the AC velocity component of the rotating body. The image forming apparatus may include an image bearing body with a surface on which a toner image is formed; a driving motor configured to drive the image bearing body according to an input signal; and a controller configured to control the driving motor to output a motor output velocity at a period equal to that of an AC velocity component of the image bearing body. A velocity control method for the rotating body includes sampling a continuous motor input signal at a period equal to that of an AC velocity component of a rotating velocity of the rotating body. The sampled signal is transmitted to a driving motor that drives the rotating body, which is driven based upon the discrete motor input signal.
Abstract:
An image forming apparatus is configured to reduce a velocity fluctuation of a rotating body by reducing the AC velocity component of the rotating body. The image forming apparatus may include an image bearing body with a surface on which a toner image is formed; a driving motor configured to drive the image bearing body according to an input signal; and a controller configured to control the driving motor to output a motor output velocity at a period equal to that of an AC velocity component of the image bearing body. A velocity control method for the rotating body includes sampling a continuous motor input signal at a period equal to that of an AC velocity component of a rotating velocity of the rotating body. The sampled signal is transmitted to a driving motor that drives the rotating body, which is driven based upon the discrete motor input signal.
Abstract:
An image forming apparatus is configured to reduce a velocity fluctuation of a rotating body by reducing the AC velocity component of the rotating body. The image forming apparatus may include an image bearing body with a surface on which a toner image is formed; a driving motor configured to drive the image bearing body according to an input signal; and a controller configured to control the driving motor to output a motor output velocity at a period equal to that of an AC velocity component of the image bearing body. A velocity control method for the rotating body includes sampling a continuous motor input signal at a period equal to that of an AC velocity component of a rotating velocity of the rotating body. The sampled signal is transmitted to a driving motor that drives the rotating body, which is driven based upon the discrete motor input signal.
Abstract:
An image forming apparatus is configured to reduce a velocity fluctuation of a rotating body by reducing the AC velocity component of the rotating body. The image forming apparatus may include an image bearing body with a surface on which a toner image is formed; a driving motor configured to drive the image bearing body according to an input signal; and a controller configured to control the driving motor to output a motor output velocity at a period equal to that of an AC velocity component of the image bearing body. A velocity control method for the rotating body includes sampling a continuous motor input signal at a period equal to that of an AC velocity component of a rotating velocity of the rotating body. The sampled signal is transmitted to a driving motor that drives the rotating body, which is driven based upon the discrete motor input signal.
Abstract:
Disclosed are a transfer unit and an image forming apparatus having the same. The apparatus can include multiple members configured to carry developer associated with color images. The transfer unit can include multiple rollers each disposed to opposingly face a respective corresponding one of the members, a belt interposed between the rollers and the members, and a device configured to support the rollers. The rollers can include a first roller at one end of the transfer unit, a second roller at an opposite end and one or more middle rollers arranged between the first and second rollers. The device can be configured such that a rotation center of the first roller and a rotation center of the second roller define a first plane and a rotation center of the one or more middle rollers defines a second plane parallel to but not co-planar with the first plane.
Abstract:
A data processing apparatus and method for allocating data to processors, allowing the processors to process the data efficiently. The data processing apparatus may predict a result of processing data, based on a workload for the data, according to a number of processors, and may determine the number of processors to be allocated with the data, using the predicted processing result.
Abstract:
A connector receives first and second differential signals. First and second signal lines are connected to the connector, and transmit the first and second differential signals, respectively. First and second differential capacitors have first and second end terminals to remove noise components of the first and second differential signals. Each of the first end terminals is connected to ground potential. The second end terminals are connected to the first and second differential lines, respectively. A differential resistor is connected to the first and second signal lines to remove the noise components of the first and second differential signals. A receiving part is connected to the first and second signal lines to receive the first and second differential signals through the differential resistor and the first and second differential capacitors.
Abstract:
A data processing apparatus and method for allocating data to processors, allowing the processors to process the data efficiently. The data processing apparatus may predict a result of processing data, based on a workload for the data, according to a number of processors, and may determine the number of processors to be allocated with the data, using the predicted processing result.
Abstract:
A skew adjusting apparatus is provided for an image forming apparatus having a plurality of skew adjusting parts arranged in a plurality of laser scanning units, respectively. The automatic skew adjusting apparatus comprises a driving source, an actuating part arranged on a driving shaft of the driving source so that the actuating part can be selectively connected with one of the skew adjusting parts depending on a position of the driving source. The actuating part actuates the connected skew adjusting part as the driving shaft rotates. A positioning part moves the driving source and a power transmission part transmits or cuts off the power of the driving source to the positioning part so as to move the driving source or stop the movement of the driving source.
Abstract:
A wet-type image forming apparatus includes an intermediate transfer medium for receiving images which are formed in a plurality of photosensitive media and overlapped thereon to form an image and transferring the image to a print medium. The intermediate transfer medium runs along a predetermined path. A drying unit heats the intermediate transfer medium to evaporate part of carrier included in the image on the intermediate transfer medium before the image is transferred onto the print medium. A cooling unit cools the heated intermediate transfer medium after the image is transferred onto the print medium by making the intermediate transfer medium directly contact a coolant.