摘要:
A component has a substrate (1) made of a transparent material, for example glass. On this layer (1), there is a linear polarizer (2) on which there is a layer (3) of a photo-oriented polymer network (PPN)(-LPP) which is oriented in locally varying fashion via its surface which covers the substrate. The layer (3) is adjoined by an anisotropic layer (4) of cross-linked liquid-crystal monomers. This layer (4) then has a molecular arrangement whose orientation is defined by the underlying orientation layer (3). The layer (4) will have been photocross-linked by exposure to a suitable wavelength of light, with the result that the molecular orientation defined by the PPN layer (3) is fixed. The clement, denoted as a whole by 7, can then be used as an optical component which is protected against forgery, it being possible for the orientation pattern of the liquid-crystal layer or the optical information stored therein to be made visible by means of an external polarizer (5), for example.
摘要:
A component has a substrate (1) made of a transparent material, for example glass. On this layer (1), there is a linear polarizer (2) on which there is a layer (3) of a photo-oriented polymer network (PPN)(-LPP) which is oriented in locally varying fashion via its surface which covers the substrate. The layer (3) is adjoined by an anisotropic layer (4) of cross-linked liquid-crystal monomers. This layer (4) then has a molecular arrangement whose orientation is defined by the underlying orientation layer (3). The layer (4) will have been photocross-linked by exposure to a suitable wavelength of light, with the result that the molecular orientation defined by the PPN layer (3) is fixed. The element, denoted as a whole by 7, can then be used as an optical component which is protected against forgery, it being possible for the orientation pattern of the liquid-crystal layer or the optical information stored therein to be made visible by means of an external polarizer (5), for example.
摘要:
Sub-micron-structured (nanostructured) polymer film or coatings are made by coating a substrate with a mixture of materials. One of the materials is removed using a selective solvent, leaving pores or other nanostructure. The substrate may be grooved, providing a competing nanostructure. The coating may act as an antireflective coating, optical retarder, optical diffuser, or orientation layer.
摘要:
A component has a substrate (1) made of a transparent material, for example glass. On this layer (1), there is a linear polarizer (2) on which there is a layer (3) of a photo-oriented polymer network (PPN)(=LPP) which is oriented in locally varying fashion via its surface which covers the substrate. The layer (3) is adjoined by an anisotropic layer (4) of cross-linked liquid-crystal monomers. This layer (4) then has a molecular arrangement whose orientation is defined by the underlying orientation layer (3). The layer (4) will have been photocross-linked by exposure to a suitable wavelength of light, with the result that the molecular orientation defined by the PPN layer (3) is fixed. The element, denoted as a whole by 7, can then be used as an optical component which is protected against forgery, it being possible for the orientation pattern of the liquid-crystal layer or the optical information stored therein to be made visible by means of an external polarizer (5), for example.
摘要:
Orientation layers of monomeric or polymeric liquid crystal layers having any desired azimuthal orientation direction and a tilt angle are produced by irradiating at an angle differing from the normal to the surface photopolymers orienting parallel to linearly polarized light.
摘要:
Linearly photopolymerized (LPP) orientation layers for liquid crystals, that is to say liquid crystal orientation layers, are oriented and crosslinked by means of linearly polarized light. The properties of an LPP orientation layer, such as the angle of tilt, surface wetting, voltage holding ratio and anchoring energy, can be adjusted and/or improved by mixing further substances into the starting material for the preparation of the orientation layer.
摘要:
A component has a substrate (1) made of a transparent material, for example glass. On this layer (1), there is a linear polarizer (2) on which there is a layer (3) of a photo-oriented polymer network (PPN)(=LPP) which is oriented in locally varying fashion via its surface which covers the substrate. The layer (3) is adjoined by an anisotropic layer (4) of cross-linked liquid-crystal monomers. This layer (4) then has a molecular arrangement whose orientation is defined by the underlying orientation layer (3). The layer (4) will have been photocross-linked by exposure to a suitable wavelength of light, with the result that the molecular orientation defined by the PPN layer (3) is fixed. The element, denoted as a whole by 7, can then be used as an optical component which is protected against forgery, it being possible for the orientation pattern of the liquid-crystal layer or the optical information stored therein to be made visible by means of an external polarizer (5), for example.
摘要:
Compensation of a liquid crystal display can be achieved using a compensation structure, having, in the following order: a) a first o-plate; b) a first retarder; c) a liquid crystal cell; d) a second retarder; and e) a second o-plate. The first and second retarders can be c-plates or biaxial retarders.
摘要:
A polymerisable mixture that can be applied as a layer, an orientation layer of the mixture, and an optical component, such as a retarder or a liquid crystal display, having a layer of which the mixture is a precursor.
摘要:
Compensation of a liquid crystal display can be achieved using a compensation structure, having, in the following order: a) a first o-plate; b) a first retarder; c) a liquid crystal cell; d) a second retarder; and e) a second o-plate. The first and second retarders can be c-plates or biaxial retarders.