Abstract:
An optical module heat dissipation structure, disposed inside an enclosure, where the optical module heat dissipation structure includes an optical module, an elastic component, a fixed wall, and a heat dissipation wall, where the fixed wall and the heat dissipation wall are both connected to the enclosure, the optical module is disposed between the fixed wall and the heat dissipation wall, the elastic component elastically abuts between the fixed wall and the optical module, and elasticity of the elastic component makes the optical module tightly cling to the heat dissipation wall, to improve the heat dissipation efficiency of the optical module heat dissipation structure. An electronic product is further provided where the electronic product includes the optical module heat dissipation structure.
Abstract:
Embodiments of the present invention relate to a board cooling apparatus comprising a shell and a board, where the board and an interior wall of the shell form a closed space, a cooling medium inlet and a cooling medium outlet are disposed on the shell, a separator plate that separates the board into a first part and a second part, a through opening between the first part and the second part, a cooling medium flows into the first part from the cooling medium inlet and then flows into the second part, and flows out from the cooling medium outlet, a flow guiding mechanism that is disposed on the board and configured to divert the cooling medium flowing into the first part from the cooling medium inlet, so as to directly guide part of the cooling medium into the second part.
Abstract:
A heat dissipation system for an optical module, related to communication fittings technologies, is provided to improve heat dissipation efficiency of the optical module. The heat dissipation system for an optical module includes a circuit card on which at least one optical module is mounted, where the optical module includes a housing and a laser disposed inside the housing. A first heat dissipation apparatus is fixedly disposed on the circuit card. A heat dissipation window is provided in an area that is above the laser and on the housing of the optical module. The first heat dissipation apparatus performs heat dissipation on the heat dissipation window.
Abstract:
An electronic device and a heat dissipation system and heat dissipation method are provided that can be used in combination with a common heat exchange/refrigerating electronic device, thereby reducing an investment cost. The heat dissipation system of an electronic device includes a cooling pool, a heat exchanger, and at least one circulating pump, where a cooling medium is provided in the cooling pool, and the electronic device and the heat exchanger are immersed in the cooling medium; the circulating pump is configured to drive the cooling medium to circulatively flow between the electronic device and the heat exchanger; and a heat exchange medium is provided in the heat exchanger and used to exchange heat with the cooling medium, and the heat exchange medium flows out of the heat exchanger for cooling and then flows back, so as to discharge heat released by the electronic device.
Abstract:
Embodiments of the present invention provide an immersion cooling system, including: an electronic device, a non-conductive working medium, and one or more gasbags. The electronic device is immersed in the non-conductive working medium; the non-conductive working medium is configured to dissipate heat for the electronic device, and a volume of the non-conductive working medium expands as a temperature rises; and a surface of the gasbag is elastic, and the gasbag is configured to reduce its volume when the gasbag is compressed by volume expansion of the non-conductive working medium, so as to buffer a pressure rise in the system, where the pressure rise is caused by the volume expansion of the non-conductive working medium. With the immersion cooling system provided in the embodiments of the present invention, installation is more flexible and cooling performance of the system is further improved.
Abstract:
A heat dissipation system for an optical module, related to communication fittings technologies, is provided to improve heat dissipation efficiency of the optical module. The heat dissipation system for an optical module includes a circuit card on which at least one optical module is mounted, where the optical module includes a housing and a laser disposed inside the housing. A first heat dissipation apparatus is fixedly disposed on the circuit card. A heat dissipation window is provided in an area that is above the laser and on the housing of the optical module. The first heat dissipation apparatus performs heat dissipation on the heat dissipation window.
Abstract:
An optical module heat dissipation structure, disposed inside an enclosure, where the optical module heat dissipation structure includes an optical module, an elastic component, a fixed wall, and a heat dissipation wall, where the fixed wall and the heat dissipation wall are both connected to the enclosure, the optical module is disposed between the fixed wall and the heat dissipation wall, the elastic component elastically abuts between the fixed wall and the optical module, and elasticity of the elastic component makes the optical module tightly cling to the heat dissipation wall, to improve the heat dissipation efficiency of the optical module heat dissipation structure. An electronic product is further provided where the electronic product includes the optical module heat dissipation structure.
Abstract:
Embodiments of the present invention relate to a board cooling apparatus comprising a shell and a board, where the board and an interior wall of the shell form a closed space, a cooling medium inlet and a cooling medium outlet are disposed on the shell, a separator plate that separates the board into a first part and a second part, a through opening between the first part and the second part, a cooling medium flows into the first part from the cooling medium inlet and then flows into the second part, and flows out from the cooling medium outlet, a flow guiding mechanism that is disposed on the board and configured to divert the cooling medium flowing into the first part from the cooling medium inlet, so as to directly guide part of the cooling medium into the second part.