Abstract:
Embodiments of the present invention provide a label-based measurement method, apparatus, and system. The method includes: allocating at least two labels to the same FEC; obtaining a label insertion mode for the at least two labels; receiving data packet, where one of the at least two labels is inserted in the data packet; and performing, according to the label insertion mode and the data packet, performance measurement on a network that the FEC passes through. By using the technical solutions provided in the embodiments of the present invention, a problem of network bandwidth occupation caused by inserting a test packet and an OAM packet during performance measurement and a problem of measurement result inaccuracy caused by OAM packet loss may be solved.
Abstract:
Embodiments of this application provide a bit-forwarding ingress router, a bit-forwarding router, and an OAM test method, and pertain to the field of multicast networks. A first BFR receives an OAM request packet from a BFIR; the first BFR determines, according to the OAM request packet, that a destination BFR corresponding to the OAM request packet is the first BFR; and the first BFR obtains a first OAM response packet according to an ID of the BFIR, and sends the first OAM response packet to the BFIR. According to the method and the apparatus that are provided in the embodiments of this application, a problem that a BFIR cannot diagnose or handle a transmission fault when the fault occurs during transmission of a multicast packet can be resolved, which helps implement connectivity testing by using an OAM packet and enables testing of multiple BFERs.
Abstract:
Embodiments of this application provide a bit-forwarding ingress router, a bit-forwarding router, and an OAM test method, and pertain to the field of multicast networks. A first BFR receives an OAM request packet from a BFIR; the first BFR determines, according to the OAM request packet, that a destination BFR corresponding to the OAM request packet is the first BFR; and the first BFR obtains a first OAM response packet according to an ID of the BFIR, and sends the first OAM response packet to the BFIR. According to the method and the apparatus that are provided in the embodiments of this application, a problem that a BFIR cannot diagnose or handle a transmission fault when the fault occurs during transmission of a multicast packet can be resolved, which helps implement connectivity testing by using an OAM packet and enables testing of multiple BFERs.
Abstract:
Embodiments of this application provide a bit-forwarding ingress router, a bit-forwarding router, and an OAM test method, and pertain to the field of multicast networks. A first BFR receives an OAM request packet from a BFIR; the first BFR determines, according to the OAM request packet, that a destination BFR corresponding to the OAM request packet is the first BFR; and the first BFR obtains a first OAM response packet according to an ID of the BFIR, and sends the first OAM response packet to the BFIR. According to the method and the apparatus that are provided in the embodiments of this application, a problem that a BFIR cannot diagnose or handle a transmission fault when the fault occurs during transmission of a multicast packet can be resolved, which helps implement connectivity testing by using an OAM packet and enables testing of multiple BFERs.
Abstract:
A method, a network device, and a system for synchronization between network devices are provided. The method includes: establishing, by a first network device, an inband synchronization channel to a second network device in a MPLS-TP network, where the inband synchronization channel is a channel on a data plane, and the first network device and the second network device are included in a same backup group; sending, a first synchronization packet to the second network device through the inband synchronization channel, where the first synchronization packet carries synchronization information of the first network device, and the synchronization information of the first network device includes configuration information or status information of the first network device. The present disclosure can implement synchronization between network devices on an MPLS-TP network that does not have a control plane.
Abstract:
Embodiments of the present invention provide a network label allocation method, a device, and a system, which enable a local PE to distinguish packets from different remote PEs. The method includes: generating, by a local provider edge PE, a VPN label route for each remote PE, where VPN labels in VPN label routes of different remote PEs are different, and the remote PE and the local PE at least belong to a same VPN; and sending the VPN label route to the remote PE, so that the remote PE separately matches an IP address of the remote PE with a target device IP address in the VPN label route, and matches an import route target RT of each VRF of the remote PE with a route target RT in the VPN label route, a packet related to a successfully matched VRF.
Abstract:
Embodiments of the present invention provide a label-based measurement method, apparatus, and system. The method includes: allocating at least two labels to the same FEC; obtaining a label insertion mode for the at least two labels; receiving data packet, where one of the at least two labels is inserted in the data packet; and performing, according to the label insertion mode and the data packet, performance measurement on a network that the FEC passes through. By using the technical solutions provided in the embodiments of the present invention, a problem of network bandwidth occupation caused by inserting a test packet and an OAM packet during performance measurement and a problem of measurement result inaccuracy caused by OAM packet loss may be solved.
Abstract:
The present invention provides a method, a device, and a system for determining a GRE tunnel identifier, applied to a scenario in which there are at least two bonded GRE tunnels between a HAG and HCPE. The method is implemented by the HAG and includes: receiving a service packet that is sent by the HCPE through a first GRE tunnel, where the service packet includes a source IP address of the first GRE tunnel carrying the service packet, and the first GRE tunnel is one of the at least two GRE tunnels; and looking up a correspondence table according to the source IP address of the first GRE tunnel, to determine a tunnel identifier of the first GRE tunnel carrying the service packet, where the correspondence table includes a correspondence between the source IP address of the first GRE tunnel and the tunnel identifier of the first GRE tunnel.
Abstract:
Embodiments of this application provide a bit-forwarding ingress router, a bit-forwarding router, and an OAM test method, and pertain to the field of multicast networks. A first BFR receives an OAM request packet from a BFIR; the first BFR determines, according to the OAM request packet, that a destination BFR corresponding to the OAM request packet is the first BFR; and the first BFR obtains a first OAM response packet according to an ID of the BFIR, and sends the first OAM response packet to the BFIR. According to the method and the apparatus that are provided in the embodiments of this application, a problem that a BFIR cannot diagnose or handle a transmission fault when the fault occurs during transmission of a multicast packet can be resolved, which helps implement connectivity testing by using an OAM packet and enables testing of multiple BFERs.
Abstract:
Embodiments of the present invention disclose a method for creating a ring network label switched path. The method includes: receiving, by a first node, a first Path message used for creating a first label switched path from a second node; allocating a first label to the first label switched path; sending a first Resv message carrying the first label to the second node; and when the first node receives a second Path message and determines that a destination node of the second label switched path is the same as that of the first label switched path, allocating the first label to the second label switched path; and sending a second Resv message carrying the first label to the second node. Solutions of the embodiments of the present invention helps reduce the number of created ring network label switched paths and maintenance complexity.