Abstract:
A magnetic resonant imaging (MRI) review workstation includes a control processor, and a display integrated or otherwise operatively coupled with the control processor, wherein the control processor is configured to receive and analyze magnetic resonant imaging information pertaining to an imaged volume of tissue, and to cause to be displayed on the display output information that reflects or is otherwise indicative of an absorption rate of a contrast agent in the volume of tissue.
Abstract:
A magnetic resonant imaging (MRI) review workstation includes a control processor, and a display integrated or otherwise operatively coupled with the control processor, wherein the control processor is configured to receive and analyze magnetic resonant imaging information pertaining to an imaged volume of tissue, and to cause to be displayed on the display output information that reflects or is otherwise indicative of an absorption rate of a contrast agent in the volume of tissue.
Abstract:
A magnetic resonant imaging (MRI) review workstation includes a control processor, and a display integrated or otherwise operatively coupled with the control processor, wherein the control processor is configured to receive and analyze magnetic resonant imaging information pertaining to an imaged volume of tissue, and to cause to be displayed on the display output information that reflects or is otherwise indicative of an absorption rate of a contrast agent in the volume of tissue.
Abstract:
A magnetic resonant imaging (MRI) review workstation includes a control processor, and a display integrated or otherwise operatively coupled with the control processor, wherein the control processor is configured to receive and analyze magnetic resonant imaging information pertaining to an imaged volume of tissue, and to cause to be displayed on the display output information that reflects or is otherwise indicative of an absorption rate of a contrast agent in the volume of tissue.
Abstract:
A magnetic resonant imaging (MRI) review workstation includes a control processor, and a display integrated or otherwise operatively coupled with the control processor, wherein the control processor is configured to receive and analyze magnetic resonant imaging information pertaining to an imaged volume of tissue, and to cause to be displayed on the display output information that reflects or is otherwise indicative of an absorption rate of a contrast agent in the volume of tissue.
Abstract:
Methods and systems for performing motion correction on imaging data. The methods include accessing a set of imaging data. The set of imaging data includes first imaging data for a first time point, second imaging data for a second time point, and third imaging data for a third time point. A location of a region of interest (ROI) is identified in the different imaging data. Differences between the locations of ROI across the imaging data are determined and aggregated to generate an aggregate motion score for the respective imaging data in the set of imaging data. One of the imaging data is then selected as reference imaging data for motion correction based on the aggregate motion score. Motion correction of the set of imaging data is performed based on the selected reference imaging data. Similar comparisons on images may be performed for peak enhancement of MRI imaging data.
Abstract:
A computer implemented method for processing MRI image data and displaying MRI images includes analyzing MRI image data to identify an image acquisition protocol used to acquire the MRI image data, and displaying a plurality of MRI images obtained from the MRI image data, wherein the MRI images are displayed in an order and/or arrangement based at least in part upon the identified image acquisition protocol.
Abstract:
A computer implemented method for processing MRI image data and displaying MRI images includes analyzing MRI image data to identify an image acquisition protocol used to acquire the MRI image data, and displaying a plurality of MRI images obtained from the MRI image data, wherein the MRI images are displayed in an order and/or arrangement based at least in part upon the identified image acquisition protocol.