Abstract:
The present invention provides an organic EL device, by which optical efficiency and stability of the organic EL device are enhanced by providing an anode of high reflectivity, high work function, superior environmental characteristic, and favorable corrosion resistance to a top-emission type organic EL device. The present invention includes an anode, an organic layer on the anode, and a cathode on the organic layer, wherein the anode comprises a reflective layer reflecting light emitted from the organic layer and a hole injection layer on the reflective layer injecting holes.
Abstract:
The present invention provides an organic EL device, by which an anode and cathode are prevented from being short-circuited in case of an emitting cell is blown out. The present invention includes an anode on a substrate, an organic layer on the anode, a cathode on the organic layer, and a short-prevention layer having a tensile stress on the cathode.
Abstract:
An organic electroluminescent device, adapted to enhance device reliability while allowing simplification of a manufacturing process, and a method for manufacturing the same are disclosed. The organic electroluminescent (EL) device, comprising a substrate, TFTs located in respective unit pixel regions on the substrate, a first insulation layer to insulate the TFTs, first electrodes formed on the first insulation layer while contacting the TFTs, respectively, a partition wall positioned between the unit pixel regions on the first insulation layer, a subsidiary electrode formed on the partition wall, an organic light emitting layer positioned on the first electrodes, an insulation part to insulate each first electrode from an associated subsidiary electrode, and a second electrode positioned on the organic light emitting layer and connected with the subsidiary electrode.
Abstract:
Provided is a method for fabricating an organic EL device that can prevent delamination of an electrode. The method includes: forming electrode separators on a substrate, the electrode separators being spaced apart by a constant distance from one another; and depositing an electrode material on an entire surface of the substrate including the electrode separators to form an electrode separated by the electrode separators. According to the present invention, since the anode is automatically separated in the unit of pixels due to the existence of the electrode separator, delamination of the anode can be prevented, and further product reliability can be enhanced. Also, since a complicated photolithography process is not needed, process efficiency can be enhanced.
Abstract:
An organic EL device based on top emission and a method for fabricating the same are disclosed. The organic EL device includes a substrate, a thin film transistor (TFT) formed on the substrate, a planarization film formed on the entire surface of the substrate including the TFT, a first electrode formed on the planarization film, having a surface at a corner area higher than a surface at a center area, an organic EL layer formed on the first electrode, and a second electrode formed on the organic EL layer.
Abstract:
An organic EL device and a method for manufacturing the same are disclosed. The organic EL device comprises a substrate having a first electrode arranged on an active region, at least one organic material layer formed on the first electrode, a second electrode formed on the organic material layer so as to extend to an inactive region of the substrate to allow heat of the device to be dissipated to an outside therethrough, and a seal-cup facing the second electrode while being sealingly connected with the second electrode at a seal line via a sealant. The organic EL device can effectively lower an interior temperature of the device while preventing degradation thereof, thereby remarkably increasing lifetime thereof, and enhance interface stability of the device, thereby remarkably suppressing degradation in characteristics of the device.
Abstract:
Provided is an organic EL device and fabrication method thereof that can prevent the performance of the organic EL layer and the TFT from being lowered in forming the cathode using an E-beam heating evaporation process. The organic EL device includes a substrate, an anode, an organic EL layer, a cathode, and a transparent electrode connected with the cathode to extract the cathode to an outside, and further includes an interconnection line connected to the transparent electrode, for discharging charges accumulated on the cathode outside the organic EL device. According to the present invention, since the charges generated on the cathode can be removed through the interconnection line, the underlying organic EL layer and the TFT can be prevented from being damaged, so that the device reliability can be enhanced.
Abstract:
An organic EL device based on top emission and a method for fabricating the same arc disclosed. The organic EL device includes a substrate, a thin film transistor (TFT) formed on the substrate, a planarization film formed on the entire surface of the substrate including the TFT, a first electrode formed on the planarization film, having a surface at a corner area higher than a surface at a center area, an organic EL layer formed on the first electrode, and a second electrode formed on the organic EL layer.
Abstract:
Provided is an organic EL device and fabrication method thereof that can prevent the performance of the organic EL layer and the TFT from being lowered in forming the cathode using an E-beam heating evaporation process. The organic EL device includes a substrate, an anode, an organic EL layer, a cathode, and a transparent electrode connected with the cathode to extract the cathode to an outside, and further includes an interconnection line connected to the transparent electrode, for discharging charges accumulated on the cathode outside the organic EL device. According to the present invention, since the charges generated on the cathode can be removed through the interconnection line, the underlying organic EL layer and the TFT can be prevented from being damaged, so that the device reliability can be enhanced.