Abstract:
Provided is a three-dimensional modeling apparatus including a stage, a constraining body, a supply nozzle, an irradiation unit, and a movement mechanism. The constraining body includes a surface including a linear region along a first direction, and is opposed to the stage so that the linear region is the closest to the stage. The supply nozzle supplies a material curable by energy of an energy ray into a slit region between the stage and the linear region. The irradiation unit irradiates the supplied material with the energy ray through the constraining body. The movement mechanism moves the stage relative to the constraining body along a second direction for forming a cured layer of the material for one layer, and moves the constraining body and the stage relative to each other along a stacking direction for stacking the cured layers.
Abstract:
Provided is a three-dimensional modeling apparatus including a supply mechanism, a deposition area, a variable mechanism, a discharge mechanism, and a control means. The supply mechanism supplies a powder material. In the deposition area, the supplied powder material is deposited. The variable mechanism varies a volume of the deposition area per a predetermined layer thickness, and thus the powder material is deposited per the predetermined layer thickness in the deposition area. The discharge mechanism discharges liquid for forming a three-dimensional object to the deposited powder material, the liquid being capable of hardening the powder material. The control means causes the discharge mechanism to discharge the liquid to the powder material, to thereby form a main body being an object being as a target to be modeled and a frame body being an object to be formed in a periphery of the main body, of the three-dimensional object.
Abstract:
A three-dimensional modeling device, including: a stage having a powder material deposited thereon for lamination; a supply mechanism supplying the powder material for each one layer on the stage; a plurality of heads having a plurality of nozzles ejecting a liquid for formation of a model, respectively, and capable of ejecting the liquid to the powder material supplied onto the stage by the supply mechanism; and a moving mechanism moving the plurality of heads in different directions relative to the stage, respectively.
Abstract:
A structure including a substrate and a coating material. The substrate includes a plurality of voids and a surface on which at least the plurality of voids are formed, and is formed such that a void ratio of the plurality of voids decreases one of 2-dimensionally and 3-dimensionally from an inner side of the substrate toward an outer side thereof. The coating material is formed on the surface of the substrate.
Abstract:
In a head drum assembly and a tape drive having said head drum assembly, the head drum assembly comprises a fixed shaft secured to a lower stator; a rotor having a motor part, and provided with a magnetic head; an upper stator disposed at a distance in an axial direction with the rotor held and secure to said shaft; and rotary transformers individually provided between the rotor and the stator. Thereby, there is realized a small and high performance head drum assembly and a tape drive in which crosstalk between different transmission system is prevented, and which improved mounting accuracy of rotary transformations.
Abstract:
Provided is a structure forming apparatus, including: a roller provided to be rotatable, having a length in an axial direction of the rotation, and capable of transmitting an energy beam; a retaining member arranged to face the roller such that a slit region having a length in the axial direction is formed between the retaining member and the roller, and capable of retaining a material to be cured by energy of the energy beam at least in the slit region; an irradiation unit configured to selectively radiate the energy beam to the slit region through the roller to cure the material so that a sheet-like structure is formed; and a take-up reel configured to take up the sheet-like structure thus formed.
Abstract:
A 3D modeling apparatus includes: a support body which supports a modeled object formed by laminating a resin material that is cured by energy of an energy ray; an illumination mechanism which illuminates the resin material with the energy ray, on the basis of image data of laminated cross-sections which constitutes 3D data of an object to be modeled which is an object of modeling, in order to form the modeled object; and a supply mechanism which supplies a material that constitutes a part of the modeled object and is different from the resin material, to the resin material that is cured as being illuminated by the illumination mechanism, on the basis of the cross-section image data.
Abstract:
Provided is a three-dimensional modeling apparatus including a stage, a constraining body, a supply nozzle, an irradiation unit, and a movement mechanism. The constraining body includes a surface including a linear region along a first direction, and is opposed to the stage so that the linear region is the closest to the stage. The supply nozzle supplies a material curable by energy of an energy ray into a slit region between the stage and the linear region. The irradiation unit irradiates the supplied material with the energy ray through the constraining body. The movement mechanism moves the stage relative to the constraining body along a second direction for forming a cured layer of the material for one layer, and moves the constraining body and the stage relative to each other along a stacking direction for stacking the cured layers.
Abstract:
A three-dimensional modeling apparatus includes a stage, a supply mechanism, a head, a movement mechanism, and a lifting and lowering mechanism. On the stage, a powder material is accumulated. The supply mechanism supplies the powder material on the stage for each predetermined layer thickness. The head ejects a liquid for forming a three-dimensional object to the powder material on the stage. The liquid is capable of binding the powder material. The movement mechanism moves the stage so that the liquid is supplied from the head to the powder material by the predetermined layer thickness. The lifting and lowering mechanism lowers the stage for each predetermined layer thickness.
Abstract:
A three-dimensional modeling apparatus includes: a stage; a regulating body having a surface including a linear region along a first direction and being arranged to face the stage so that the linear region of the surface comes closest to the stage; a supply nozzle configured to supply a material to be cured by energy of an energy beam to a slit region which is a region between the stage and the linear region; a movement mechanism configured to move the regulating body and the stage relative to each other along a second direction other than the first direction to form a cured layer of the material for at least one layer; and an irradiation unit configured to irradiate the material supplied from the supply nozzle to the slit region with the energy beam under a state in which the stage and the regulating body rest relative to each other.