Abstract:
A method of producing a silicon nitride sintered body which comprises using an amorphous Si.sub.3 N.sub.4 powder having a mean particle size of 5 to 50 nm, a nitrogen content of 30 to 39 wt. %, an oxygen content of 1 to 10 wt. %, the sum of the nitrogen content and the oxygen content being 38 to 42 wt. % and an unavoidable impurities content of less than 500 ppm as the raw material to form a molded body, sealing the molded body in a capsule and treating it with HIP in the range of 1000.degree. to 1800.degree. C. and 1000 to 2000 atm until the density becomes 3.1 to 3.4 g/cm.sup.3. In the method of the invention, active surface energy of silicon nitride powder is utilized as the driving force for sintering due to using a super fine powder. The super fine powder improves sintering ability by uniform mixing. The sintering ability is further improved by substituting a suitable amount of the nitrogen in the silicon nitride with oxygen. By the above means, the sintering strength can be secured under not severe sintering conditions. As a result, a sintering aid can be omitted.
Abstract:
In the method of invention, the formability is imparted to the slurry of a metal or ceramic powder by employing a porous mold and removing the dispersion medium through the evaporation or thermal decomposition thereof, or by using a silazane oil as the dispersion medium and curing it by heating. Since the phase change usually accompanying volume change does not occur in the dispersion medium, strain and deformation rarely occur in the molded body. As result, the sintered body obtained has high dimensional accuracy.
Abstract:
A method for molding powders which comprises introducing a thin-wall resilient mold inside a ventilative mold support, reducing the outside pressure of the ventilative mold support to less than the atmospheric pressure (760 Torr), putting a thin-wall resilient mold exactly close to the inside wall of the ventilative mold support, supplying powder material into the thin-wall resilient mold, exhausting air existing in the voids formed in the powder material, and taking the ventilative mold support apart to apply cold isostatic press treatment to the thin-wall resilient mold. The shape of the thin-wall resilient mold is similar to the shape of the ventilative mold support.
Abstract:
A method for distilling shale oil from oil shale, which comprises: supplying an oil shale together with a granular heat medium heated to a prescribed temperature in a heating furnace to a distiling furnace, where a gas containing a gaseous shale oil, hydrogen and carbon monoxide is separated by vaporization from said oil shale through heat exchange with said granular heat medium; separating the liquid shale oil from said gas, separating said granular heat medium from the waste oil shale after separation of said gas; and then, feeding back said granular heat medium into said heating furnace to reheat said heat medium again to said prescribed temperature and to use said heat medium in recycle. In said method, said granular heat medium comprises manganese oxides and iron oxides. The heat of said granular heat medium is replenished with the heat produced by exothermic reaction of said hydrogen and said carbon monoxide contained in said gas with Mn.sub.2 O.sub.3 contained in said granular heat medium and reducing by means of said hydrogen and said carbon monoxide contained in said gas, Fe.sub.2 O.sub.3 contained in said granular heat medium into Fe.sub.3 O.sub.4 and Fe to impart magnetism to said granular heat medium; and, magnetically separating said granular heat medium from said waste oil shale.
Abstract translation:一种用于从油页岩中蒸馏页岩油的方法,包括:将油页岩与加热炉中加热到规定温度的颗粒状热介质一起供给到蒸馏炉,其中含有气态页岩油,氢气和一氧化碳 通过与所述颗粒状热介质的热交换从所述油页岩中蒸发而分离; 将液体页岩油与所述气体分离,在分离所述气体之后将所述颗粒状热介质与废油页岩分离; 然后将所述颗粒状热介质反馈到所述加热炉中,以再次将所述热介质再次加热到所述规定温度,并使用所述热介质进行再循环。 在所述方法中,所述粒状热介质包括氧化锰和氧化铁。 所述颗粒状热介质的热量由所述氢气和所述气体中所含的一氧化碳与所述颗粒状热介质中所含的Mn 2 O 3的放热反应产生的热量补充,并通过所述氢气和所述气体中所含的一氧化碳还原 ,所述粒状热介质中含有Fe 2 O 3,Fe 3 O 4和Fe,赋予所述粒状热介质磁性; 并且从所述废油页岩磁分离所述颗粒状热介质。
Abstract:
A dewaxing method of a metal and/or ceramic molded body which comprises immersing the metal and/or ceramic molded body formed through a plastic molding in a boiling solvent to extract the dispersion medium contained in the molded body with said solvent. According to the method of the invention, the dewaxing time can be shortened from about 150 hours to the sum of about 54 hours for the solvent extraction and about 11 hous for dewaxing under heating. The dewaxed molded body is a sound body containing no crack nor expansion.
Abstract:
There is disclosed a method for eliminating an organic dispersion medium from a molded product obtained by plasticizing-molding or casting-molding of metallic and/or ceramic powders wherein the elimination is by extraction by liquid carbon dioxide at a temperature not lower than -30.degree. C. and not higher than -31.1.degree. C. The method prevents nonuniform volumetric decrease of the molded product to be otherwise caused by the extraction of the organic dispersion medium, while also making it possible to completely eliminate the organic dispersion medium without causing residual strain or deformation in the molded product.
Abstract:
An apparatus for manufacturing a sintered body with high density comprises: a table having an object to be processed laid thereon; a pressure vessel accommodating a heat element heating the object around and a heat-insulating mantle surrounding the heat element; supply device for supplying to the pressure vessel an extractant which extracts a binder or a dispersion medium contained in the object, exhaust device for exhausting the extractant and an extracted substance from the pressure vessel; pressure device for raising a pressure in the pressure vessel, and vacuum means for evacuating the pressure vessel. The apparatus enables carrying out the three steps of drying or degreasing, sintering and hot isostatic pressing of the object once put in the pressure vessel without handling the object outside the vessel. The object is formed as a compact in the preprocess in advance of being put in the apparatus.
Abstract:
A tetrafluoroethylene-type fluoroplastic powder is added and mixed with a metal powder and the mixture is shaped. The compact is heated in a nonoxidizing atmosphere and the oxides on the surface of the metal particles are converted and removed as gaseous fluorides. Alternatively, after the oxides are converted to solid or liquid fluorides, the fluorides are reduced by hydrogen and then they are removed as gaseous reaction products. Thereafter, the compact is sintered.
Abstract:
A boron-nitride-containing material of multi-component system is obtained at a low cost by heating a mixed powder containing a boride and an oxide in a nitrifying atmosphere, whereby a part or the whole of the oxide is reduced with the element bonded to boron of the boride to convert the raw materials to one or more kinds of an oxide having less bonded oxygen, an acid nitride, a nitride, a carbide, and a boride and also boron nitride is formed. A sintered product of a boron-nitride-containing material is obtained by packing a mixed powder containing borides in a heat-resistant mold and heating the packed powders in a nitrifying atmosphere while restraining the packed powders by the mold. The sintered product is obtained in which neither expansion nor deformation occurred and no cracks formed.
Abstract:
A method of producing a ceramic sintered body having a ceramic membrane which comprises a process of applying a precursor capable of converting into a ceramic membrane having a new function through heating onto at least a portion of a ceramic porous body to impart said function of the surface of the ceramic porous body, a process of applying a precursor capable of converting into a gas-impermeable membrane through heating over the whole surface of the porous body, a process of forming the gas-impermeable membrane by heating, a process of conducting hot isostatic pressing to the porous body, and a process of removing said gas-impermeable membrane. Ceramic sintered bodies having a dense ceramic membrane on the surface can be produced efficiently in very short processes.