Abstract:
According to one aspect of the application, a device for driving a fastening element into a substrate has an energy-transfer element for transferring energy to the fastening element. The energy-transfer element can move preferably between a starting position and a setting position, wherein the energy-transfer element is located, before a driving-in procedure, in the starting position and, after the driving-in procedure, in the setting position. According to another aspect of the application, the device comprises a mechanical-energy storage device for storing mechanical energy. The energy-transfer element is then suitable preferably for transferring energy from the mechanical-energy storage device to the fastening element.
Abstract:
The invention relates to a bolt-firing device that can be operated electrically and that assumes different device states during operation.In order to further increase the safety during operation of bolt-firing devices that can be operated electrically, the bolt-firing device (1) comprises a monitoring and/or diagnostics mechanism (24) that monitors the device states.
Abstract:
A setting tool for driving fastening elements in a constructional component, includes a muzzle (14), a bolt guide (15) located in the muzzle (14), a magazine (20) for fastening elements (50) and releasably mountable on the tool housing (11) and having a connection section (21) provided at an end of the magazine (20) adjacent to the muzzle (14) and with which the magazine (20) is secured to the muzzle (14), and a connection device for releasably mounting the magazine (20) on the housing (11) and including a snap device (30) located between the magazine (20) and the housing (11) and having a snap member (33) and a counter-snap member (34) engageable with each other in a snap position (35) of the magazine (20), with the snap device (30) applying pressure to the muzzle (14) in the snap position (35).
Abstract:
According to one aspect of the application, a device for driving a fastening element into a substrate has an energy-transfer element for transferring energy to the fastening element. The energy-transfer element can move preferably between a starting position and a setting position, wherein the energy-transfer element is located, before a driving-in procedure, in the starting position and, after the driving-in procedure, in the setting position.According to another aspect of the application, the device comprises a mechanical-energy storage device for storing mechanical energy. The energy-transfer element is then suitable preferably for transferring energy from the mechanical-energy storage device to the fastening element.
Abstract:
According to one aspect of the application, a device for driving a fastening element into a substrate has an energy-transfer element for transferring energy to the fastening element. The energy-transfer element can move preferably between a starting position and a setting position, wherein the energy-transfer element is located, before a driving-in procedure, in the starting position and, after the driving-in procedure, in the setting position.According to another aspect of the application, the device comprises a mechanical-energy storage device for storing mechanical energy. The energy-transfer element is then suitable preferably for transferring energy from the mechanical-energy storage device to the fastening element.
Abstract:
A hand-held drive-in tool for driving fastening elements in a workpiece and including a guide (12), a drive-in ram (13) displaceable in the guide (12) for driving a fastening element in, a drive-in unit (30) for driving the drive-in ram (13) and including at least one first drive spring (31) and at least one second drive spring (32) having respectively, opposite first and a second expansion directions (37, 38), and a tensioning device for preloading the drive-in ram (13) and the first drive spring (31).
Abstract:
A hand-held setting tool for driving fastening elements in a workpiece includes a muzzle member (20) axially displaceable relative to the tool housing (11) in a direction of an operational axis (A) of the setting tool (10), a feeding channel (28) for a fastening element strip (50) and arranged in the muzzle member (20) and opening into a fastening element the receiving chamber (29) provided in the muzzle member (20), and a locking member (40) arranged on the muzzle member (20) and forming a locking section (42) displaceable into the feeding channel (28), and a blocking section (41) for preventing displacement of the muzzle member relative to the housing.
Abstract:
According to one aspect of the application, a device for driving a fastening element into a substrate has an energy-transfer element for transferring energy to the fastening element. The energy-transfer element can move preferably between a starting position and a setting position, wherein the energy-transfer element is located, before a driving-in procedure, in the starting position and, after the driving-in procedure, in the setting position.According to another aspect of the application, the device comprises a mechanical-energy storage device for storing mechanical energy. The energy-transfer element is then suitable preferably for transferring energy from the mechanical-energy storage device to the fastening element.
Abstract:
According to one aspect of the application, a tool for driving a fastening element into an underlying surface comprises an energy transmission element for transmitting energy to the fastening element. The energy transmission element is preferably movable between an initial position and a setting position, the energy transmission device being in the initial position before the driving process and in the setting position after the driving process.According to another aspect of the application, the device comprises a mechanical energy accumulator for storing mechanical energy. The energy transmission element is then suitable particularly for transmitting energy from the mechanical energy accumulator to the fastening element.
Abstract:
According to one aspect of the application, a device for driving a fastening element into a substrate has an energy-transfer element for transferring energy to the fastening element. The energy-transfer element can move preferably between a starting position and a setting position, wherein the energy-transfer element is located, before a driving-in procedure, in the starting position and, after the driving-in procedure, in the setting position.According to another aspect of the application, the device comprises a mechanical-energy storage device for storing mechanical energy. The energy-transfer element is then suitable preferably for transferring energy from the mechanical-energy storage device to the fastening element.