Abstract:
A wavelength-division multiplexing optical communication system and a method for measuring optical performance of an output signal for the system. The optical communication system includes: a service-provider device; a local node; and a plurality of subscriber devices. The service-provider device includes: a plurality of first optical transceivers; a first optical multiplexer/demultiplexer (OD/OM) connected to the plurality of first optical transceivers; and a seed-light source providing seed light. Each subscriber device includes a second optical transceiver. The local node connects the service-provider device and the plurality of subscriber devices to each other using a DWDM link comprising: a second multiplexer/demultiplexer (OD/OM); and a single-mode optical fiber for transmission. Here, the optical intensity of an output signal of the second optical transceiver is determined by compensating for the value of the loss caused when the output signal passes through the second OD/OM of the local node.
Abstract:
A seed light module for a WDM-PON system is provided. The seed light module includes a reflector configured to reflect a part of seed light that is generated from a light source generator, and an optical attenuator configured to attenuate the intensity of the reflected seed light and provide the attenuated seed light, which corresponds to a signal generated by attenuating the intensity of the reflected seed light, to the light source generator.
Abstract:
A power saving apparatus for an optical line terminal (OLT) and an optical network unit (ONU) is provided. The power saving apparatus includes a determination unit configured to determine whether a data traffic is generated between the ONU and a customer premises equipment (CPE), and a control unit configured to perform control such that each of the OLT and the ONU are converted to a power saving mode if a result of the determination is that a data traffic is not generated.
Abstract:
A continuous-mode wavelength converting apparatus, a burst-mode wavelength converting apparatus, a remote termination apparatus and a central office termination apparatus for converting a burst-mode upstream wavelength signal into a continuous-mode upstream wavelength signal, and thereby transmitting the signal to a long distance and increasing link capacity. The continuous-mode wavelength converting apparatus may convert a received burst-mode upstream electric signal into a continuous-mode upstream electric signal by inserting a first frame at the front of the signal as an indicator of a start of the signal, inserting a second frame at the end of the burst-mode upstream electric signal as an indicator of an end of the signal, and inserting an idle signal into at least one remaining region of the burst-mode upstream electric signal.
Abstract:
An apparatus for driving a wavelength-independent light source is provided. The apparatus includes a seed light signal generation unit configured to generate seed light signals with one or more wavelengths based on a wavelength identification signal, a wavelength light detection unit configured to detect the wavelength identification signal from the seed light signals, an extraction unit configured to extract wavelength information corresponding to the detected wavelength identification signal and extract a driving condition of a wavelength-independent light source corresponding to the extracted wavelength information, and a driving unit configured to drive the wavelength-independent light source according to the extracted driving condition.
Abstract:
An apparatus for driving a wavelength-independent light source is provided. The apparatus includes a seed light signal generation unit configured to generate seed light signals with one or more wavelengths based on a wavelength identification signal, a wavelength light detection unit configured to detect the wavelength identification signal from the seed light signals, an extraction unit configured to extract wavelength information corresponding to the detected wavelength identification signal and extract a driving condition of a wavelength-independent light source corresponding to the extracted wavelength information, and a driving unit configured to drive the wavelength-independent light source according to the extracted driving condition.
Abstract:
The present invention relates to an open optical access network system in which one optical access network is open to enable a plurality of service providers and a plurality of subscribers to simultaneously use the optical access network, to thereby improve the efficiency of using the optical access network, wherein each subscriber can be provided with a plurality of different services from the plurality of service providers, thereby enabling the flexible selection of services and the flexible change in services, thus improving the efficiency of using an optical infrastructure.
Abstract:
An APC receptacle stub and an APC TOSA having the same are provided. The APC receptacle stub includes a first APC stub and a second APC stub. The first APC stub has an optical fiber inserted thereto and is provided with one end section polished in an APC shape. The second APC stub has an optical fiber inserted thereto and is provided with one end section polished in an APC shape and an opposite end section which is coupled to an opposite end section of the first APC stub through rotation adjustment in the same axial direction as an axial direction of the opposite end section of the first APC stub. The APC receptacle stub enables easy optical alignment and is applicable to a light source that is sensitive to reflection.
Abstract:
An APC receptacle stub and an APC TOSA having the same are provided. The APC receptacle stub includes a first APC stub and a second APC stub. The first APC stub has an optical fiber inserted thereto and is provided with one end section polished in an APC shape. The second APC stub has an optical fiber inserted thereto and is provided with one end section polished in an APC shape and an opposite end section which is coupled to an opposite end section of the first APC stub through rotation adjustment in the same axial direction as an axial direction of the opposite end section of the first APC stub. The APC receptacle stub enables easy optical alignment and is applicable to a light source that is sensitive to reflection.
Abstract:
A wavelength-division multiplexing optical communication system and a method for measuring optical performance of an output signal for the system. The optical communication system includes: a service-provider device; a local node; and a plurality of subscriber devices. The service-provider device includes: a plurality of first optical transceivers; a first optical multiplexer/demultiplexer (OD/OM) connected to the plurality of first optical transceivers; and a seed-light source providing seed light. Each subscriber device includes a second optical transceiver. The local node connects the service-provider device and the plurality of subscriber devices to each other using a DWDM link comprising: a second multiplexer/demultiplexer (OD/OM); and a single-mode optical fiber for transmission. Here, the optical intensity of an output signal of the second optical transceiver is determined by compensating for the value of the loss caused when the output signal passes through the second OD/OM of the local node.