Abstract:
A method, a base station, and a system for sending radio resource control (RRC) signaling are provided. The method includes a pico base station and a macro base station participate in configuration and generation of an RRC reconfiguration message; the pico base station establishes only one RRC entity that is used to generate a configuration parameter or an RRC entity; the RRC reconfiguration message cooperatively generated by the pico base station and the macro base station is uniformly sent by the macro base station to a user equipment (UE). According to the application, the UE can support an RRC reconfiguration message sent by the pico base station, only by establishing a signaling radio bearer (SRB) corresponding to the macro base station. Accordingly, design complexity and costs are lowered.
Abstract:
Embodiments disclose a cell status changing method. The method includes receiving, by user equipment, a first indication sent by a master base station, where the first indication is used to indicate a status change of a first cell of the master base station or a status change of a second cell of a secondary base station; and performing activation on the first cell or the second cell according to the first indication, or performing deactivation on the first cell or the second cell according to the first indication. In embodiments, both the master base station and the secondary base station serve the UE and undergo carrier aggregation, and the UE may obtain, by using the received first indication sent by the master base station, an active state or an inactive state of a serving cell that belongs to a base station that serves the UE.
Abstract:
The present invention discloses a method for transmitting data on a wireless local area network (WLAN), user equipment (UE), and an access point (AP). The method includes: receiving first indication information sent by an AP, where the first indication information is used to indicate that UE can preferentially send data to the AP when the UE obtains a transmission resource through contention; determining, according to the first indication information, a first moment for sending current data to the AP, where an interval between a second moment at which the UE receives a first feedback message sent by the AP and the first moment is a first sending interval, the first feedback message is used to indicate whether a previous piece of data is successfully received, and the first sending interval is less than a distributed interframe space (DIFS); and sending the current data to the AP at the first moment.
Abstract:
A subframe processing method and device are disclosed. The subframe processing method includes: if data packets that are not received by an evolved NodeB (eNB) include at least two consecutive Multimedia Broadcast Multicast Service (MBMS) data packets to be scheduled in a Dynamic Schedule Period (DSP) by the eNB, setting a subframe of the eNB that is used to transmit Dynamic Schedule Information (DSI) corresponding to the DSP to null. When the eNB finds that consecutive MBMS data packets are lost and/or that a type 0 Protocol Data Unit (PDU) group is lost, a subframe used to transmit the DSI may be set to null, thereby preventing the eNB from transmitting incorrect DSI which may interfere with other eNBs and cause incorrect data receiving of a user equipment (UE).
Abstract:
The present invention discloses a method for transmitting data on a wireless local area network (WLAN), user equipment (UE), and an access point (AP). The method includes: receiving first indication information sent by an AP, where the first indication information is used to indicate that UE can preferentially send data to the AP when the UE obtains a transmission resource through contention; determining, according to the first indication information, a first moment for sending current data to the AP, where an interval between a second moment at which the UE receives a first feedback message sent by the AP and the first moment is a first sending interval, the first feedback message is used to indicate whether a previous piece of data is successfully received, and the first sending interval is less than a distributed interframe space (DIFS); and sending the current data to the AP at the first moment.
Abstract:
Embodiments of the present application provide a certificate management method and apparatus in an NFV architecture. The certificate management method includes: determining, by an MANO, a storage network element, where the storage network element is configured to store a certificate of a VNFC, and the storage network element is different from the VNFC; creating, by the MANO, storage space in the storage network element, where the storage space is used to store the certificate of the VNFC; and sending, by the MANO, an address of the storage space to the VNFC, so that the VNFC accesses the address of the storage space, obtains the certificate of the VNFC, and directly communicates with another network element by using the certificate stored in the storage network element. The VNFC does not locally store the certificate.
Abstract:
The present invention provides a method and an apparatus for sending uplink/downlink scheduling information, and a method and an apparatus for receiving uplink/downlink scheduling information. The method for sending downlink scheduling information includes: determining, in downlink subframes on a second carrier, a first downlink subframe, in which at time corresponding to the first downlink subframe, a subframe on a first carrier is an uplink subframe; and sending, on a fifth downlink subframe on the first carrier, downlink scheduling information corresponding to the first downlink subframe on the second carrier to a terminal, in which time corresponding to the fifth downlink subframe is before the time corresponding to the first downlink subframe. The present invention achieves the purpose of performing uplink and downlink scheduling on a second carrier through a first carrier bearing a PDCCH.
Abstract:
Embodiments of the present disclosure provide a communication method and a communications device. The method includes: generating, by a first communications device, a MAC PDU data packet, where the MAC PDU data packet includes at least one first-type MAC CE, each first-type MAC CE is used to carry information about multiple secondary serving cells, and the first communications device determines a location of the first-type MAC CE in the MAC PDU data packet according to a secondary serving cell corresponding to the first-type MAC CE; and sending, by the first communications device, the MAC PDU data packet to a second communications device, so that the second communications device obtains the first-type MAC CE, and determines, according to the location of the first-type MAC CE in the MAC PDU data packet, the secondary serving cell corresponding to the first-type MAC CE.
Abstract:
Embodiments disclose a cell status changing method. The method includes receiving, by user equipment, a first indication sent by a master base station, where the first indication is used to indicate a status change of a first cell of the master base station or a status change of a second cell of a secondary base station; and performing activation on the first cell or the second cell according to the first indication, or performing deactivation on the first cell or the second cell according to the first indication. In embodiments, both the master base station and the secondary base station serve the UE and undergo carrier aggregation, and the UE may obtain, by using the received first indication sent by the master base station, an active state or an inactive state of a serving cell that belongs to a base station that serves the UE.
Abstract:
A method for data transmission, comprising: receiving, by a device, a paging message, and determining an opportunity for acquiring an uplink transmission resource, by basing on a subframe for receiving the paging message; acquiring, by the device, an uplink transmission resource at the opportunity for acquiring the uplink transmission resource; and reporting, by the device, user data in the uplink transmission resource, by using a time advance that is stored in the device itself and that corresponds to a current position. According to the embodiments of the present invention, no random access is required when the MTC device transmits uplink data, and no RRC connection or user plane bearer is to be established, which greatly simplifies the procedures of data transmission for the device, and the device can quickly and high-efficiently transmit uplink data, thereby improving the transmission efficiency, and reducing the signaling load of the base station.