Abstract:
A wavelength switching apparatus includes M input components, a first optical component, a first switch array, a second switch array, a second optical component, and K output components. The M input components include at least one local input component having N input ports, and a light beam input by the local input component can be converged, under an action of the first optical component, on a row of switch units that are in the first switch array and that are corresponding to the local input component. In this way, this is equivalent to further connecting an N*1-dimensional WSS to an input end of an M*K-dimensional WSS, so that the wavelength switching apparatus can integrate a wavelength adding function based on the M*K-dimensional WSS.
Abstract:
The present application discloses an add/drop multiplexer, including a first line board and a tributary board, where the first line board includes at least a first interface and a second interface, the first interface is disposed between the tributary board and the first line board, and the second interface is disposed on a network side of the first line board; the first line board is configured to output a first signal received from a first link through the second interface; the first line board is configured to output a second signal received from the first link to the tributary board through the first interface; and the first line board is configured to receive a third signal from the tributary board through the first interface, and input the third signal into the first link. An inter-board interface on a link is effectively eliminated, thereby improving a link bandwidth of a device.
Abstract:
Methods and apparatus for a reconfigurable optical add-drop multiplexer (ROADM) cluster node are provided. In some embodiments, the ROADM cluster node includes a set of g line chassis for performing line functionality. In some embodiments, the ROADM cluster node further includes a set of h add-drop chassis for performing add-drop functionality. In some embodiments, each of the g line chassis includes a set of N line cards and a set of M interconnect cards. In some embodiments, the ROADM cluster node further includes a set of M interconnect chassis configured for interconnecting each line chassis to each other line chassis. In some embodiments, the set of M interconnect chassis is further configured for interconnecting each line chassis to each of the h add-drop chassis. In some embodiments, the ROADM cluster node separates the line functionality and add-drop functionality. In some embodiments, 1.15N≤M≤1.5N.
Abstract:
The present disclosure provides example wavelength selective switch (WSS), wavefront control element, and integrated liquid crystal on silicon (LCoS). One example WSS includes an input port fiber array, a demultiplexing/multiplexing grating group, an output port fiber array, and a beam deflection component group including two beam deflection components and at least one wavefront control element located between the demultiplexing/multiplexing grating group and the beam deflection component group or integrated with the LCoS. At least one beam deflection component is a LCoS. The input port fiber array receives multi-wavelength optical signals. The demultiplexing/multiplexing grating group demultiplexes and outputs the multi-wavelength optical signals. The beam deflection component group deflects the multi-wavelength optical signals to the demultiplexing/multiplexing grating group. The demultiplexing/multiplexing grating group multiplexes the multi-wavelength optical signals to the output port fiber array. The wavefront control element and the LCoS jointly modulate optical signals transmitted through N*M wavelength channels.
Abstract:
An electrical switching cluster system includes a plurality of input nodes, a plurality of intermediate nodes, and a plurality of output nodes. Each of the input nodes performs electrical switching on electrical signals to obtain a plurality of groups of first electrical signals, and converts one group of first electrical signals into a multi-wavelength first optical signal. Each of the intermediate nodes demultiplexes a plurality of first optical signals to obtain a plurality of groups of second optical signals, and multiplexes optical signals of different wavelengths in the plurality of groups of second optical signals to obtain a plurality of multi-wavelength third optical signals. Each of the output nodes converts one third optical signal into one group of second electrical signals, and performs electrical switching on a plurality of groups of second electrical signals to output the plurality of groups of second electrical signals through any output port.
Abstract:
A wavelength switching apparatus includes M input components, a first optical component, a first switch array, a second switch array, a second optical component, and K output components. The M input components include at least one local input component having N input ports, and a light beam input by the local input component can be converged, under an action of the first optical component, on a row of switch units that are in the first switch array and that are corresponding to the local input component. In this way, this is equivalent to further connecting an N*1-dimensional WSS to an input end of an M*K-dimensional WSS, so that the wavelength switching apparatus can integrate a wavelength adding function based on the M*K-dimensional WSS.
Abstract:
The present application discloses an add/drop multiplexer, including a first line board and a tributary board, where the first line board includes at least a first interface and a second interface, the first interface is disposed between the tributary board and the first line board, and the second interface is disposed on a network side of the first line board; the first line board is configured to output a first signal received from a first link through the second interface; the first line board is configured to output a second signal received from the first link to the tributary board through the first interface; and the first line board is configured to receive a third signal from the tributary board through the first interface, and input the third signal into the first link. An inter-board interface on a link is effectively eliminated, thereby improving a link bandwidth of a device.
Abstract:
Embodiments of the present invention provide an optical sending module, an optical receiving module, an apparatus for sending an optical signal, and an apparatus for receiving an optical signal, and relate to the field of optical communications. The optical sending module includes: an FEC coding module and an optical sending interface. The apparatus for sending an optical signal includes: a protocol processing module and the optical sending module. The optical receiving module includes: an FEC decoding module and an optical receiving interface. The apparatus for receiving an optical signal includes: a protocol processing module and the optical receiving module. The present invention can reduce the scale, power consumption, and cost of the protocol processing module and reduce the network expansion cost.