Abstract:
A dielectric resonator, a dielectric filter using the dielectric resonator, a transceiver, and a base station. The dielectric filter includes a body made of a solid-state dielectric material, where a plurality of indentations are disposed at a first surface of the body and where at least one of a hole or a groove is disposed between adjacent indentations of the plurality of indentations, and a conducting layer, wherein the first surface and other surfaces of the body, surfaces of the plurality of the indentations, and an interior of the at least one of the hole or the groove are covered with the conducting layer.
Abstract:
Embodiments of the present disclosure provide a dielectric resonator, a dielectric filter using the dielectric resonator, a transceiver, and a base station, and solve a problem that a loss indicator of an existing dielectric filter cannot meet a filtering requirement of a base station. The dielectric resonator includes a body made of a solid-state dielectric material, where an indentation is disposed on a surface of the body, and the surface of the body and a surface of the indentation are covered with a conducting layer; the dielectric filter includes at least two of the foregoing dielectric resonators. Another type of dielectric filter includes a body made of a solid-state dielectric material, where at least two indentations are disposed on a surface of the body, a hole and/or a groove is disposed between adjacent indentations on the body, and the surface of the body is covered with a conducting layer.
Abstract:
The present disclosure relates to transverse magnetic wave (TM) mode filters and methods for manufacturing a TM mode filter. One example TM mode filter includes a filter body, a dielectric, and a transition layer, the filter body including a filter cavity and a cover, and having hollow confined space, the dielectric located in the hollow confined space, and the transition layer configured to connect the dielectric and the filter body. A coefficient of thermal expansion (CTE) of the transition layer is between a CTE of the filter body and a CTE of the dielectric.
Abstract:
Embodiments relate to the field of technologies of components of communications devices, and provide a dielectric filter, which resolves a problem that a solid dielectric filter has a difficulty in implementing capacitive coupling. The dielectric filter includes at least two dielectric resonators, where each of the dielectric resonators includes a body made of a solid-state dielectric material, and an adjusting hole located on a surface of the body. The adjusting hole is a blind hole, configured to adjust a resonance frequency of the dielectric resonator on which the blind hole is located. The bodies of all the dielectric resonators included by the dielectric filter form a body of the dielectric filter.
Abstract:
A dielectric resonator, a dielectric filter using the dielectric resonator, a transceiver, and a base station. The dielectric filter includes a body made of a solid-state dielectric material, where a plurality of indentations are disposed at a first surface of the body and where at least one of a hole or a groove is disposed between adjacent indentations of the plurality of indentations, and a conducting layer, wherein the first surface and other surfaces of the body, surfaces of the plurality of the indentations, and an interior of the at least one of the hole or the groove are covered with the conducting layer.
Abstract:
The present application provides a dielectric resonator, a dielectric filter, a base station and a method for fabricating the dielectric resonator or the dielectric filter. The dielectric resonator includes: a solid dielectric resonator body, a blind hole located on one side of the solid dielectric resonator body, a metalized layer covering both a surface of the solid dielectric resonator body and a surface of the blind hole, and a demetallized notch located at the metalized layer on the surface of the blind hole. The dielectric resonator provided in the present application can implement tuning of the dielectric resonator, and reduce impact on the resonance frequency of the dielectric resonator after the dielectric resonator is tuned, where the impact caused by that the demetallized notch is covered by a metal material in an assembly process of the dielectric resonator, and signal energy that is leaked from the notch is reduced.
Abstract:
A dielectric resonator, a dielectric filter using the dielectric resonator, a transceiver, and a base station. The dielectric filter includes a body made of a solid-state dielectric material, where a plurality of indentations are disposed at a first surface of the body and where at least one of a hole or a groove is disposed between adjacent indentations of the plurality of indentations, and a conducting layer, wherein the first surface and other surfaces of the body, surfaces of the plurality of the indentations, and an interior of the at least one of the hole or the groove are covered with the conducting layer.
Abstract:
Embodiments relate to the field of technologies of components of communications devices, and provide a dielectric filter, which resolves a problem that a solid dielectric filter has a difficulty in implementing capacitive coupling. The dielectric filter includes at least two dielectric resonators, where each of the dielectric resonators includes a body made of a solid dielectric material, and an adjusting hole located on a surface of the body. The adjusting hole is a blind hole, configured to adjust a resonance frequency of the dielectric resonator on which the blind hole is located. The bodies of all the dielectric resonators included by the dielectric filter form a body of the dielectric filter.
Abstract:
Embodiments of the present disclosure provide a dielectric resonator, a dielectric filter using the dielectric resonator, a transceiver, and a base station, and solve a problem that a loss indicator of an existing dielectric filter cannot meet a filtering requirement of a base station. The dielectric resonator includes a body made of a solid-state dielectric material, where an indentation is disposed on a surface of the body, and the surface of the body and a surface of the indentation are covered with a conducting layer; the dielectric filter includes at least two of the foregoing dielectric resonators. Another type of dielectric filter includes a body made of a solid-state dielectric material, where at least two indentations are disposed on a surface of the body, a hole and/or a groove is disposed between adjacent indentations on the body, and the surface of the body is covered with a conducting layer.
Abstract:
Embodiments relate to the field of technologies of components of communications devices, and provide a dielectric filter, which resolves a problem that a solid dielectric filter has a difficulty in implementing capacitive coupling. The dielectric filter includes at least two dielectric resonators, where each of the dielectric resonators includes a body made of a solid dielectric material, and an adjusting hole located on a surface of the body. The adjusting hole is a blind hole, configured to adjust a resonance frequency of the dielectric resonator on which the blind hole is located. The bodies of all the dielectric resonators included by the dielectric filter form a body of the dielectric filter.