摘要:
Methods for forming barrier/seed layers for interconnect structures are provided herein. In some embodiments, a method of processing a substrate having an opening formed in a first surface of the substrate, the opening having a sidewall and a bottom surface, the method may include forming a layer comprising manganese (Mn) and at least one of ruthenium (Ru) or cobalt (Co) on the sidewall and the bottom surface of the opening, the layer having a first surface adjacent to the sidewall and bottom surface of the opening and a second surface opposite the first surface, wherein the second surface comprises predominantly at least one of ruthenium (Ru) or cobalt (Co) and wherein a predominant quantity of manganese (Mn) in the layer is not disposed proximate the second surface; and depositing a conductive material on the layer to fill the opening.
摘要:
Methods for forming barrier/seed layers for interconnect structures are provided herein. In some embodiments, a method of processing a substrate having an opening formed in a first surface of the substrate, the opening having a sidewall and a bottom surface, the method may include forming a layer comprising manganese (Mn) and at least one of ruthenium (Ru) or cobalt (Co) on the sidewall and bottom surface of the opening; and depositing a conductive material on the layer to fill the opening. In some embodiments, one of ruthenium (Ru) or cobalt (Co) is deposited on the sidewall and bottom surface of the opening. The materials may be deposited by chemical vapor deposition (CVD) or by physical vapor deposition (PVD).
摘要:
Methods for depositing ruthenium-containing films are provided herein. In some embodiments, a method of depositing a ruthenium-containing film on a substrate may include depositing a ruthenium-containing film on a substrate using a ruthenium-containing precursor, the deposited ruthenium-containing film having carbon incorporated therein; and exposing the deposited ruthenium-containing film to an oxygen-containing gas to remove at least some of the carbon from the deposited ruthenium-containing film. In some embodiments, the oxygen-containing gas exposed ruthenium-containing film may be annealed in a hydrogen-containing gas to remove at least some oxygen from the ruthenium-containing film. In some embodiments, the deposition, exposure, and annealing may be repeated to deposit the ruthenium-containing film to a desired thickness.
摘要:
Methods for depositing ruthenium-containing films are disclosed herein. In some embodiments, a method of depositing a ruthenium-containing film on a substrate may include depositing a ruthenium-containing film on a substrate using a ruthenium-containing precursor, the deposited ruthenium-containing film having carbon incorporated therein; and exposing the deposited ruthenium-containing layer to a hydrogen-containing gas to remove at least some of the carbon from the deposited ruthenium-containing film. In some embodiments, the hydrogen-containing gas exposed ruthenium-containing film may be subsequently exposed to an oxygen-containing gas to at least one of remove at least some carbon from or add oxygen to the ruthenium-containing film. In some embodiments, the deposition and exposure to the hydrogen-containing gas and optionally, the oxygen-containing gas may be repeated to deposit the ruthenium-containing film to a desired thickness.
摘要:
Metal gate structures and methods for forming thereof are provided herein. In some embodiments, a method for forming a metal gate structure on a substrate having a feature formed in a high k dielectric layer may include depositing a first layer within the feature atop the dielectric layer; depositing a second layer comprising cobalt or nickel within the feature atop the first layer; and depositing a third layer comprising a metal within the feature atop the second layer to fill the feature, wherein at least one of the first or second layers forms a wetting layer to form a nucleation layer for a subsequently deposited layer, wherein one of the first, second, or third layers forms a work function layer, and wherein the third layer forms a gate electrode.
摘要:
In an on demand database system, a query engine applies a custom index for inner queries. The query engine receives a query and determines that the query has an inner query nested within the primary query. The query engine identifies that a custom index exists for a client associated with the query, and applies the custom index to filter results for the query. The custom index includes a subset of information of a table that includes accounts for multiple different clients. By using the custom index, the query engine can filter the results more efficiently that if solely using the multiple client table.