Abstract:
Disclosed is a variable compression ration mechanism in which a control shaft is rotated and driven by an electric motor through a wave gear reducer. The wave gear reducer includes: a first internal gear member; an external gear member arranged concentrically inside the internal gear member; a wave generator having an oval outer shape and arranged inside the external gear member; and a second internal gear member, wherein a ratio of the number of teeth of a fixed gear portion of the first internal gear member to the number of teeth of a first gear portion of the external gear member is set greater than a ratio of the number of teeth of an output-side gear portion of the second internal gear member to the number of teeth of a second gear portion of the external gear member.
Abstract:
In this wave generator for a strain wave gearing, a plug thereof is configured from a plurality of split plug segments that are joined in the axial direction. Wave gearings are installed to the split outer peripheral surfaces of the split plug segments by press fitting, and thereafter the split plug segments can be joined in the axial direction. It is possible to easily produce the wave generator in which a plurality of wave bearings are press fitted, in parallel arrangement, on the non-circular outer peripheral surface.
Abstract:
A strain wave gearing unit has a unit housing, a strain wave gearing, and a bearing device. Balls of a bearing part of the bearing device are positioned on the diametrically outer side with respect to a cylindrical barrel part of an externally toothed gear. The diameter S of the balls is 0.05 to 0.15 times the pitch diameter D of the externally toothed gear. The centers of the balls are positioned between a point at a distance of 1.2 times the diameter S toward the cylindrical-barrel-part side from an inner-side end surface of a diaphragm along a center axis and a point at a distance of 1 times the diameter S toward a side opposite the cylindrical barrel part from the inner-side end surface. The bearing device can be configured to be used in common for strain wave gearing units having different axial lengths.
Abstract:
In a unit-type strain wave gearing, a rotating-side member, which is constituted by a second internally toothed gear and an output shaft is supported, via a first sliding bearing and a second sliding bearing, on a fixed-side member so as to be capable of relative rotation, the fixed-side member being constituted by a unit housing and a first internally toothed gear. Sliding bearing surfaces of the first sliding bearing and sliding bearing surfaces of the second sliding bearing are defined by a conic surface having a central axis line as a center line. It is possible to realize a unit-type strain wave gearing which is advantageous in making smaller and more compact than when a roller bearing is used. It is also easier to adjust the gap between the sliding bearing surfaces because a radial sliding bearing having no function to adjust the radial gap is obviated.
Abstract:
An externally toothed gear of a dual-type strain wave gearing is provided with first and second external teeth having different teeth numbers. The first and second external teeth are flexed by a wave generator by the same flexing amount, into an ellipsoidal shape. The tooth depth of tooth profiles of the first external teeth having a low teeth number is smaller than the tooth depth of tooth profiles of the second external teeth having a high teeth number. A dual-type strain wave gearing can be achieved with which the first and second external teeth having different teeth numbers can be suitably flexed to form excellent meshing states with respective internally toothed gears.
Abstract:
A reduction drive-side mounting end face on a strain wave gearing reduction drive unit has a circular center hole, and a motor-side mounting end face on a motor has a circular projection. The strain wave gearing reduction drive unit and motor are coaxially mounted by the circular projection being fit into the circular center hole with a regulating ring therebetween. The regulating ring, which regulates the motion of a flexible external gear, can be easily mounted to the strain wave gearing reduction drive unit by using the motor. The strain wave gearing reduction drive unit can be mounted to a motor comprising a circular projection with a different outer diameter by using a regulating ring with a different inner diameter.
Abstract:
A strain wave gearing unit has a unit housing, a strain wave gearing, and a bearing device. Balls of a bearing part of the bearing device are positioned on the diametrically outer side with respect to a cylindrical barrel part of an externally toothed gear. The diameter S of the balls is 0.05 to 0.15 times the pitch diameter D of the externally toothed gear. The centers of the balls are positioned between a point at a distance of 1.2 times the diameter S toward the cylindrical-barrel-part side from an inner-side end surface of a diaphragm along a center axis and a point at a distance of 1 times the diameter S toward a side opposite the cylindrical barrel part from the inner-side end surface. The bearing device can be configured to be used in common for strain wave gearing units having different axial lengths.
Abstract:
A relieving portion is formed between a first external tooth portion and a second external tooth portion in the external teeth of a flexible externally toothed gear of a flat strain wave gearing. The length L1 of the relieving portion in the tooth trace direction is within the range of 0.1 to 0.5 of the tooth width L of the external teeth. The maximum relieving amount t from the tooth top land of an external tooth in the relieving portion is 3.3×10−4
Abstract:
An externally toothed gear of a dual-type strain wave gearing is provided with first and second external teeth having different teeth numbers, and is flexed into an ellipsoidal shape by a wave generator. When t(1) represents the tooth bottom rim wall thickness of the first external teeth, and t(2) represents the tooth bottom rim wall thickness of the second external teeth, the ratio of t(1)/t(2) is set to a value satisfying 0.5>t(1)/t(2)
Abstract:
A hollow-type strain wave gearing unit has a cup-shaped flexible externally-toothed gear, in which one shaft end portion of a hollow rotation shaft of a wave generator is located. The shaft end portion is supported by a bearing mounted on a bearing holder fixed to a boss of the flexible externally-toothed gear. The bearing holder has a retainer holding portion to prevent a retainer of a wave generator bearing from coming off in the axis line direction. There is no need to dispose a retainer holding plate of the wave generator bearing inside the flexible externally-toothed gear, whereby the axial length of the hollow-type strain wave gearing unit can be reduced.