摘要:
A system and method for analyzing and visualizing spectral CT data includes access of a set of image data acquired from a patient comprising spectral CT data, identification of a plurality of target regions of interest (TROIs) and a reference region of interest (RROI) from the set of image data, extraction of a plurality of target spectral Hounsfield unit (HU) curves from image data representing the plurality of TROIs, extraction of a reference spectral HU curve from image data representing the RROI, normalization of the plurality of target spectral HU curves with respect to the reference spectral HU curve, and display of the plurality of normalized target spectral HU curves.
摘要:
A system and method for analyzing and visualizing spectral CT data includes access of a set of image data acquired from a patient comprising spectral CT data, identification of a plurality of target regions of interest (TROIs) and a reference region of interest (RROI) from the set of image data, extraction of a plurality of target spectral Hounsfield unit (HU) curves from image data representing the plurality of TROIs, extraction of a reference spectral HU curve from image data representing the RROI, normalization of the plurality of target spectral HU curves with respect to the reference spectral HU curve, and display of the plurality of normalized target spectral HU curves.
摘要:
A technique for selecting portions of a multi-resolution medical image data set to be stored and the portions of the multi-resolution medical image data set to be discarded in order to reduce the overall amount of image data that is stored for each image data set. The selection is based on the clinical purpose for obtaining the medical image data. The clinical purpose for obtaining the medical image is used to define regions of interest in the medical image. At each resolution level of the multi-resolution medical image data set, the regions of interest are stored at the full resolution, while the remaining portions of the medical image are stored at a lesser resolution. A three-dimensional bit mask of the regions of interest is produced from a segmentation of the regions of interest. The segmentation list and the multi-resolution medical image data set are decomposed into multiple resolution levels. Each resolution level has a low frequency component and several high frequency components. The low frequency portions at each resolution level may be stored in their entirety. The segmentation list is used to select the regions in the high frequency portions of the multi-resolution image data that correspond to the regions of interest and those regions that do not. The regions in the high frequency portions of the multi-resolution image data that correspond to the region of interest are stored. Those regions in the high frequency portions of the multi-resolution image data that do not correspond to a region of interest are discarded.
摘要:
A system comprising a memory device having a plurality of routines stored therein, a processor configured to execute the plurality of routines stored in the memory device, the plurality of routines comprising: a routine configured to effect, when executed, accessing of patient deviation scores indicative of differences between patient data and reference data representative of a population segment, wherein the patient deviation scores are derived from longitudinal data of the patient data such that the patient deviation scores include a plurality of sets of patient deviation scores, each set indicative of differences between patient data collected at a respective point in time and the reference data; a routine configured to effect, when executed, identifying a trend in the patient deviation scores for at least one clinical parameter; a routine configured to effect, when executed, generating of a report including a visual indication of the trend; and a routine configured to effect, when executed, outputting of the report. The report includes one or more views including Z, T, D, DT, and D feedback on T views, using image and non-image data.
摘要:
A system and method for detecting, diagnosing, and monitoring a disease and determining a disease signature including accessing patient deviation scores indicative of differences between patient data and reference data representative of a population segment, the patient deviation scores derived from longitudinal patient data such that the patient deviation scores include a plurality of sets of patient deviation scores, each set indicative of differences between patient data collected at a respective point in time and the reference data. The system and method also includes identifying a trend in the patient deviation scores for at least one clinical parameter, generating a report including a visual indication of the trend, and outputting the report. The report includes one or more views including Z, T, D, DT, and D feedback on T views, using image and non-image data.
摘要:
A system and method for detecting, diagnosing, and monitoring a disease and determining a disease signature including accessing patient deviation scores indicative of differences between patient data and reference data representative of a population segment, the patient deviation scores derived from longitudinal patient data such that the patient deviation scores include a plurality of sets of patient deviation scores, each set indicative of differences between patient data collected at a respective point in time and the reference data. The system and method also includes identifying a trend in the patient deviation scores for at least one clinical parameter, generating a report including a visual indication of the trend, and outputting the report. The report includes one or more views including Z, T, D, DT, and D feedback on T views, using image and non-image data.
摘要:
A technique for selecting portions of a multi-resolution medical image data set to be stored and the portions of the multi-resolution medical image data set to be discarded in order to reduce the overall amount of image data that is stored for each image data set. The selection is based on the clinical purpose for obtaining the medical image data. The clinical purpose for obtaining the medical image is used to define regions of interest in the medical image. At each resolution level of the multi-resolution medical image data set, the regions of interest are stored at the full resolution, while the remaining portions of the medical image are stored at a lesser resolution. A three-dimensional bit mask of the regions of interest is produced from a segmentation of the regions of interest. The segmentation list and the multi-resolution medical image data set are decomposed into multiple resolution levels. Each resolution level has a low frequency component and several high frequency components. The low frequency portions at each resolution level may be stored in their entirety. The segmentation list is used to select the regions in the high frequency portions of the multi-resolution image data that correspond to the regions of interest and those regions that do not. The regions in the high frequency portions of the multi-resolution image data that correspond to the region of interest are stored. Those regions in the high frequency portions of the multi-resolution image data that do not correspond to a region of interest are discarded.
摘要:
A system and method for analyzing and visualizing a local feature of interest includes access of a clinical image dataset comprising clinical image data acquired from a patient, identification of a region of interest (ROI) from the clinical image dataset, and extraction of at least one local feature corresponding to the ROI. The system and method also include definition of a local feature dataset comprising data representing at least one local feature, access of a pre-computed reference dataset comprising image data representing an expected value of the at least one identified derived characteristic of interest, and comparison of the characteristic dataset to the pre-computed reference dataset. Further, the system and method include calculation of at least one deviation metric from the comparison and output of a visualization of the at least one deviation metric.
摘要:
A system and method for analyzing and visualizing a local feature of interest includes access of a clinical image dataset comprising clinical image data acquired from a patient, identification of a region of interest (ROI) from the clinical image dataset, and extraction of at least one local feature corresponding to the ROI. The system and method also include definition of a local feature dataset comprising data representing at least one local feature, access of a pre-computed reference dataset comprising image data representing an expected value of the at least one identified derived characteristic of interest, and comparison of the characteristic dataset to the pre-computed reference dataset. Further, the system and method include calculation of at least one deviation metric from the comparison and output of a visualization of the at least one deviation metric.
摘要:
A system comprising a memory device having a plurality of routines stored therein, a processor configured to execute the plurality of routines stored in the memory device, the plurality of routines comprising: a routine configured to effect, when executed, accessing of patient deviation scores indicative of differences between patient data and reference data representative of a population segment, wherein the patient deviation scores are derived from longitudinal data of the patient data such that the patient deviation scores include a plurality of sets of patient deviation scores, each set indicative of differences between patient data collected at a respective point in time and the reference data; a routine configured to effect, when executed, identifying a trend in the patient deviation scores for at least one clinical parameter; a routine configured to effect, when executed, generating of a report including a visual indication of the trend; and a routine configured to effect, when executed, outputting of the report. The report includes one or more views including Z, T, D, DT, and D feedback on T views, using image and non-image data.