Robotic grasping prediction using neural networks and geometry aware object representation

    公开(公告)号:US11554483B2

    公开(公告)日:2023-01-17

    申请号:US17094111

    申请日:2020-11-10

    Applicant: Google LLC

    Abstract: Deep machine learning methods and apparatus, some of which are related to determining a grasp outcome prediction for a candidate grasp pose of an end effector of a robot. Some implementations are directed to training and utilization of both a geometry network and a grasp outcome prediction network. The trained geometry network can be utilized to generate, based on two-dimensional or two-and-a-half-dimensional image(s), geometry output(s) that are: geometry-aware, and that represent (e.g., high-dimensionally) three-dimensional features captured by the image(s). In some implementations, the geometry output(s) include at least an encoding that is generated based on a trained encoding neural network trained to generate encodings that represent three-dimensional features (e.g., shape). The trained grasp outcome prediction network can be utilized to generate, based on applying the geometry output(s) and additional data as input(s) to the network, a grasp outcome prediction for a candidate grasp pose.

    ROBOTIC GRASPING PREDICTION USING NEURAL NETWORKS AND GEOMETRY AWARE OBJECT REPRESENTATION

    公开(公告)号:US20210053217A1

    公开(公告)日:2021-02-25

    申请号:US17094111

    申请日:2020-11-10

    Applicant: Google LLC

    Abstract: Deep machine learning methods and apparatus, some of which are related to determining a grasp outcome prediction for a candidate grasp pose of an end effector of a robot. Some implementations are directed to training and utilization of both a geometry network and a grasp outcome prediction network. The trained geometry network can be utilized to generate, based on two-dimensional or two-and-a-half-dimensional image(s), geometry output(s) that are: geometry-aware, and that represent (e.g., high-dimensionally) three-dimensional features captured by the image(s). In some implementations, the geometry output(s) include at least an encoding that is generated based on a trained encoding neural network trained to generate encodings that represent three-dimensional features (e.g., shape). The trained grasp outcome prediction network can be utilized to generate, based on applying the geometry output(s) and additional data as input(s) to the network, a grasp outcome prediction for a candidate grasp pose.

    ROBOTIC GRASPING PREDICTION USING NEURAL NETWORKS AND GEOMETRY AWARE OBJECT REPRESENTATION

    公开(公告)号:US20200094405A1

    公开(公告)日:2020-03-26

    申请号:US16617169

    申请日:2018-06-18

    Applicant: Google LLC

    Abstract: Deep machine learning methods and apparatus, some of which are related to determining a grasp outcome prediction for a candidate grasp pose of an end effector of a robot. Some implementations are directed to training and utilization of both a geometry network and a grasp outcome prediction network. The trained geometry network can be utilized to generate, based on two-dimensional or two-and-a-half-dimensional image(s), geometry output(s) that are: geometry-aware, and that represent (e.g., high-dimensionally) three-dimensional features captured by the image(s). In some implementations, the geometry output(s) include at least an encoding that is generated based on a trained encoding neural network trained to generate encodings that represent three-dimensional features (e.g., shape). The trained grasp outcome prediction network can be utilized to generate, based on applying the geometry output(s) and additional data as input(s) to the network, a grasp outcome prediction for a candidate grasp pose.

Patent Agency Ranking