-
公开(公告)号:US12026833B2
公开(公告)日:2024-07-02
申请号:US17310678
申请日:2020-10-28
申请人: Google LLC
发明人: Ricardo Martin Brualla , Moustafa Meshry , Daniel Goldman , Rohit Kumar Pandey , Sofien Bouaziz , Ke Li
CPC分类号: G06T17/20 , G06T7/40 , G06T15/04 , G06T2207/10028 , G06T2207/20081 , G06T2207/30201
摘要: Systems and methods are described for utilizing an image processing system with at least one processing device to perform operations including receiving a plurality of input images of a user, generating a three-dimensional mesh proxy based on a first set of features extracted from the plurality of input images and a second set of features extracted from the plurality of input images. The method may further include generating a neural texture based on a three-dimensional mesh proxy and the plurality of input images, generating a representation of the user including at least a neural texture, and sampling at least one portion of the neural texture from the three-dimensional mesh proxy. In response to providing the at least one sampled portion to a neural renderer, the method may include receiving, from the neural renderer, a synthesized image of the user that is previously not captured by the image processing system.
-
2.
公开(公告)号:US20200372284A1
公开(公告)日:2020-11-26
申请号:US16616235
申请日:2019-10-16
申请人: Google LLC
发明人: Christoph Rhemann , Abhimitra Meka , Matthew Whalen , Jessica Lynn Busch , Sofien Bouaziz , Geoffrey Douglas Harvey , Andrea Tagliasacchi , Jonathan Taylor , Paul Debevec , Peter Joseph Denny , Sean Ryan Francesco Fanello , Graham Fyffe , Jason Angelo Dourgarian , Xueming Yu , Adarsh Prakash Murthy Kowdle , Julien Pascal Christophe Valentin , Peter Christopher Lincoln , Rohit Kumar Pandey , Christian Häne , Shahram Izadi
摘要: Methods, systems, and media for relighting images using predicted deep reflectance fields are provided. In some embodiments, the method comprises: identifying a group of training samples, wherein each training sample includes (i) a group of one-light-at-a-time (OLAT) images that have each been captured when one light of a plurality of lights arranged on a lighting structure has been activated, (ii) a group of spherical color gradient images that have each been captured when the plurality of lights arranged on the lighting structure have been activated to each emit a particular color, and (iii) a lighting direction, wherein each image in the group of OLAT images and each of the spherical color gradient images are an image of a subject, and wherein the lighting direction indicates a relative orientation of a light to the subject; training a convolutional neural network using the group of training samples, wherein training the convolutional neural network comprises: for each training iteration in a series of training iterations and for each training sample in the group of training samples: generating an output predicted image, wherein the output predicted image is a representation of the subject associated with the training sample with lighting from the lighting direction associated with the training sample; identifying a ground-truth OLAT image included in the group of OLAT images for the training sample that corresponds to the lighting direction for the training sample; calculating a loss that indicates a perceptual difference between the output predicted image and the identified ground-truth OLAT image; and updating parameters of the convolutional neural network based on the calculated loss; identifying a test sample that includes a second group of spherical color gradient images and a second lighting direction; and generating a relit image of the subject included in each of the second group of spherical color gradient images with lighting from the second lighting direction using the trained convolutional neural network.
-
公开(公告)号:US11710287B2
公开(公告)日:2023-07-25
申请号:US17309817
申请日:2020-08-04
申请人: GOOGLE LLC
CPC分类号: G06T19/20 , G06T15/005 , G06T15/04 , G06T15/506 , G06V10/95 , G06T2219/2012 , G06T2219/2021
摘要: Systems and methods are described for generating a plurality of three-dimensional (3D) proxy geometries of an object, generating, based on the plurality of 3D proxy geometries, a plurality of neural textures of the object, the neural textures defining a plurality of different shapes and appearances representing the object, providing the plurality of neural textures to a neural renderer, receiving, from the neural renderer and based on the plurality of neural textures, a color image and an alpha mask representing an opacity of at least a portion of the object, and generating a composite image based on the pose, the color image, and the alpha mask.
-
公开(公告)号:US20240290025A1
公开(公告)日:2024-08-29
申请号:US18588948
申请日:2024-02-27
申请人: GOOGLE LLC
发明人: Yinda Zhang , Sean Ryan Francesco Fanello , Ziqian Bai , Feitong Tan , Zeng Huang , Kripasindhu Sarkar , Danhang Tang , Di Qiu , Abhimitra Meka , Ruofei Du , Mingsong Dou , Sergio Orts Escolano , Rohit Kumar Pandey , Thabo Beeler
CPC分类号: G06T13/40 , G06T7/90 , G06T17/20 , G06V10/44 , G06T2207/10024 , G06T2207/20084
摘要: A method comprises receiving a first sequence of images of a portion of a user, the first sequence of images being monocular images; generating an avatar based on the first sequence of images, the avatar being based on a model including a feature vector associated with a vertex; receiving a second sequence of images of the portion of the user; and based on the second sequence of images, modifying the avatar with a displacement of the vertex to represent a gesture of the avatar.
-
5.
公开(公告)号:US20240212325A1
公开(公告)日:2024-06-27
申请号:US18596822
申请日:2024-03-06
申请人: Google LLC
发明人: Yinda Zhang , Feitong Tan , Danhang Tang , Mingsong Dou , Kaiwen Guo , Sean Ryan Francesco Fanello , Sofien Bouaziz , Cem Keskin , Ruofei Du , Rohit Kumar Pandey , Deqing Sun
IPC分类号: G06V10/771 , G06T7/70 , G06T17/00 , G06V10/44 , G06V10/75
CPC分类号: G06V10/771 , G06T7/70 , G06T17/00 , G06V10/44 , G06V10/751 , G06T2207/20081 , G06T2207/20084
摘要: Systems and methods for training models to predict dense correspondences across images such as human images. A model may be trained using synthetic training data created from one or more 3D computer models of a subject. In addition, one or more geodesic distances derived from the surfaces of one or more of the 3D models may be used to generate one or more loss values, which may in turn be used in modifying the model's parameters during training.
-
公开(公告)号:US20220130111A1
公开(公告)日:2022-04-28
申请号:US17310678
申请日:2020-10-28
申请人: Google LLC
发明人: Ricardo Martin Brualla , Moustafa Meshry , Daniel Goldman , Rohit Kumar Pandey , Sofien Bouaziz , Ke Li
摘要: Systems and methods are described for utilizing an image processing system with at least one processing device to perform operations including receiving a plurality of input images of a user, generating a three-dimensional mesh proxy based on a first set of features extracted from the plurality of input images and a second set of features extracted from the plurality of input images. The method may further include generating a neural texture based on a three-dimensional mesh proxy and the plurality of input images, generating a representation of the user including at least a neural texture, and sampling at least one portion of the neural texture from the three-dimensional mesh proxy. In response to providing the at least one sampled portion to a neural renderer, the method may include receiving, from the neural renderer, a synthesized image of the user that is previously not captured by the image processing system.
-
公开(公告)号:US20240212106A1
公开(公告)日:2024-06-27
申请号:US18554960
申请日:2021-04-28
申请人: Google LLC
发明人: Chloe LeGendre , Paul Debevec , Sean Ryan Francesco Fanello , Rohit Kumar Pandey , Sergio Orts Escolano , Christian Haene , Sofien Bouaziz
摘要: Apparatus and methods related to applying lighting models to images are provided. An example method includes receiving, via a computing device, an image comprising a subject. The method further includes relighting, via a neural network, a foreground of the image to maintain a consistent lighting of the foreground with a target illumination. The relighting is based on a per-pixel light representation indicative of a surface geometry of the foreground. The light representation includes a specular component, and a diffuse component, of surface reflection. The method additionally includes predicting, via the neural network, an output image comprising the subject in the relit foreground. One or more neural networks can be trained to perform one or more of the aforementioned aspects.
-
公开(公告)号:US11954899B2
公开(公告)日:2024-04-09
申请号:US18274371
申请日:2021-03-11
申请人: Google LLC
发明人: Yinda Zhang , Feitong Tan , Danhang Tang , Mingsong Dou , Kaiwen Guo , Sean Ryan Francesco Fanello , Sofien Bouaziz , Cem Keskin , Ruofei Du , Rohit Kumar Pandey , Deqing Sun
IPC分类号: G06V10/771 , G06T7/70 , G06T17/00 , G06V10/44 , G06V10/75
CPC分类号: G06V10/771 , G06T7/70 , G06T17/00 , G06V10/44 , G06V10/751 , G06T2207/20081 , G06T2207/20084
摘要: Systems and methods for training models to predict dense correspondences across images such as human images. A model may be trained using synthetic training data created from one or more 3D computer models of a subject. In addition, one or more geodesic distances derived from the surfaces of one or more of the 3D models may be used to generate one or more loss values, which may in turn be used in modifying the model's parameters during training.
-
9.
公开(公告)号:US20240046618A1
公开(公告)日:2024-02-08
申请号:US18274371
申请日:2021-03-11
申请人: Google LLC
发明人: Yinda Zhang , Feitong Tan , Danhang Tang , Mingsong Dou , Kaiwen Guo , Sean Ryan Francesco Fanello , Sofien Bouaziz , Cem Keskin , Ruofei Du , Rohit Kumar Pandey , Deqing Sun
IPC分类号: G06V10/771 , G06T17/00 , G06T7/70 , G06V10/44 , G06V10/75
CPC分类号: G06V10/771 , G06T17/00 , G06T7/70 , G06V10/44 , G06V10/751 , G06T2207/20081 , G06T2207/20084
摘要: Systems and methods for training models to predict dense correspondences across images such as human images. A model may be trained using synthetic training data created from one or more 3D computer models of a subject. In addition, one or more geodesic distances derived from the surfaces of one or more of the 3D models may be used to generate one or more loss values, which may in turn be used in modifying the model's parameters during training.
-
10.
公开(公告)号:US10997457B2
公开(公告)日:2021-05-04
申请号:US16616235
申请日:2019-10-16
申请人: Google LLC
发明人: Christoph Rhemann , Abhimitra Meka , Matthew Whalen , Jessica Lynn Busch , Sofien Bouaziz , Geoffrey Douglas Harvey , Andrea Tagliasacchi , Jonathan Taylor , Paul Debevec , Peter Joseph Denny , Sean Ryan Francesco Fanello , Graham Fyffe , Jason Angelo Dourgarian , Xueming Yu , Adarsh Prakash Murthy Kowdle , Julien Pascal Christophe Valentin , Peter Christopher Lincoln , Rohit Kumar Pandey , Christian Häne , Shahram Izadi
摘要: Methods, systems, and media for relighting images using predicted deep reflectance fields are provided. In some embodiments, the method comprises: identifying a group of training samples, wherein each training sample includes (i) a group of one-light-at-a-time (OLAT) images that have each been captured when one light of a plurality of lights arranged on a lighting structure has been activated, (ii) a group of spherical color gradient images that have each been captured when the plurality of lights arranged on the lighting structure have been activated to each emit a particular color, and (iii) a lighting direction, wherein each image in the group of OLAT images and each of the spherical color gradient images are an image of a subject, and wherein the lighting direction indicates a relative orientation of a light to the subject; training a convolutional neural network using the group of training samples, wherein training the convolutional neural network comprises: for each training iteration in a series of training iterations and for each training sample in the group of training samples: generating an output predicted image, wherein the output predicted image is a representation of the subject associated with the training sample with lighting from the lighting direction associated with the training sample; identifying a ground-truth OLAT image included in the group of OLAT images for the training sample that corresponds to the lighting direction for the training sample; calculating a loss that indicates a perceptual difference between the output predicted image and the identified ground-truth OLAT image; and updating parameters of the convolutional neural network based on the calculated loss; identifying a test sample that includes a second group of spherical color gradient images and a second lighting direction; and generating a relit image of the subject included in each of the second group of spherical color gradient images with lighting from the second lighting direction using the trained convolutional neural network.
-
-
-
-
-
-
-
-
-