-
公开(公告)号:US20200279134A1
公开(公告)日:2020-09-03
申请号:US16649599
申请日:2018-09-20
Applicant: GOOGLE LLC
Inventor: Konstantinos Bousmalis , Alexander Irpan , Paul Wohlhart , Yunfei Bai , Mrinal Kalakrishnan , Julian Ibarz , Sergey Vladimir Levine , Kurt Konolige , Vincent O. Vanhoucke , Matthew Laurance Kelcey
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training an action selection neural network that is used to control a robotic agent interacting with a real-world environment.
-
公开(公告)号:US12083678B2
公开(公告)日:2024-09-10
申请号:US17422260
申请日:2020-01-23
Applicant: Google LLC
Inventor: Mrinal Kalakrishnan , Yunfei Bai , Paul Wohlhart , Eric Jang , Chelsea Finn , Seyed Mohammad Khansari Zadeh , Sergey Levine , Allan Zhou , Alexander Herzog , Daniel Kappler
IPC: B25J9/16
CPC classification number: B25J9/163 , G05B2219/40116 , G05B2219/40499
Abstract: Techniques are disclosed that enable training a meta-learning model, for use in causing a robot to perform a task, using imitation learning as well as reinforcement learning. Some implementations relate to training the meta-learning model using imitation learning based on one or more human guided demonstrations of the task. Additional or alternative implementations relate to training the meta-learning model using reinforcement learning based on trials of the robot attempting to perform the task. Further implementations relate to using the trained meta-learning model to few shot (or one shot) learn a new task based on a human guided demonstration of the new task.
-
公开(公告)号:US20240238967A1
公开(公告)日:2024-07-18
申请号:US18605452
申请日:2024-03-14
Applicant: Google LLC
Inventor: Paul Wohlhart , Stephen James , Mrinal Kalakrishnan , Konstantinos Bousmalis
IPC: B25J9/16 , G05B13/02 , G06F18/21 , G06F18/214 , G06F18/2431 , G06N3/045 , G06N3/08 , G06T7/50 , G06V10/764 , G06V10/776 , G06V10/82 , G06V20/10
CPC classification number: B25J9/161 , B25J9/163 , B25J9/1671 , B25J9/1697 , G05B13/027 , G06F18/2148 , G06F18/217 , G06F18/2431 , G06N3/045 , G06N3/08 , G06T7/50 , G06V10/764 , G06V10/776 , G06V10/82 , G06V20/10 , G06T2207/20081 , G06T2207/20084
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a generator neural network to adapt input images.
-
公开(公告)号:US11951622B2
公开(公告)日:2024-04-09
申请号:US17656137
申请日:2022-03-23
Applicant: Google LLC
Inventor: Paul Wohlhart , Stephen James , Mrinal Kalakrishnan , Konstantinos Bousmalis
IPC: G06T7/00 , B25J9/16 , G05B13/02 , G06F18/21 , G06F18/214 , G06F18/2431 , G06N3/045 , G06N3/08 , G06T7/50 , G06V10/764 , G06V10/776 , G06V10/82 , G06V20/10
CPC classification number: B25J9/161 , B25J9/163 , B25J9/1671 , B25J9/1697 , G05B13/027 , G06F18/2148 , G06F18/217 , G06F18/2431 , G06N3/045 , G06N3/08 , G06T7/50 , G06V10/764 , G06V10/776 , G06V10/82 , G06V20/10 , G06T2207/20081 , G06T2207/20084
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a generator neural network to adapt input images.
-
公开(公告)号:US11341364B2
公开(公告)日:2022-05-24
申请号:US16649599
申请日:2018-09-20
Applicant: GOOGLE LLC
Inventor: Konstantinos Bousmalis , Alexander Irpan , Paul Wohlhart , Yunfei Bai , Mrinal Kalakrishnan , Julian Ibarz , Sergey Vladimir Levine , Kurt Konolige , Vincent O. Vanhoucke , Matthew Laurance Kelcey
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training an action selection neural network that is used to control a robotic agent interacting with a real-world environment.
-
公开(公告)号:US20220105624A1
公开(公告)日:2022-04-07
申请号:US17422260
申请日:2020-01-23
Applicant: Google LLC
Inventor: Mrinal Kalakrishnan , Yunfei Bai , Paul Wohlhart , Eric Jang , Chelsea Finn , Seyed Mohammad Khansari Zadeh , Sergey Levine , Allan Zhou , Alexander Herzog , Daniel Kappler
IPC: B25J9/16
Abstract: Techniques are disclosed that enable training a meta-learning model, for use in causing a robot to perform a task, using imitation learning as well as reinforcement learning. Some implementations relate to training the meta-learning model using imitation learning based on one or more human guided demonstrations of the task. Additional or alternative implementations relate to training the meta-learning model using reinforcement learning based on trials of the robot attempting to perform the task. Further implementations relate to using the trained meta-learning model to few shot (or one shot) learn a new task based on a human guided demonstration of the new task.
-
-
-
-
-