-
公开(公告)号:US12141199B2
公开(公告)日:2024-11-12
申请号:US17548859
申请日:2021-12-13
Applicant: Google LLC
Inventor: Balakrishnan Varadarajan , George Dan Toderici , Apostol Natsev , Nitin Khandelwal , Sudheendra Vijayanarasimhan , Weilong Yang , Sanketh Shetty
IPC: G06K9/62 , G06F16/78 , G06F16/783 , G06F18/214 , G06F18/22 , G06F18/2413 , G06V20/40 , G06V20/70 , H04N5/265
Abstract: A system and methodology provide for annotating videos with entities and associated probabilities of existence of the entities within video frames. A computer-implemented method identifies an entity from a plurality of entities identifying characteristics of video items. The computer-implemented method selects a set of features correlated with the entity based on a value of a feature of a plurality of features, determines a classifier for the entity using the set of features, and determines an aggregation calibration function for the entity based on the set of features. The computer-implemented method selects a video frame from a video item, where the video frame having associated features, and determines a probability of existence of the entity based on the associated features using the classifier and the aggregation calibration function.
-
公开(公告)号:US20220207873A1
公开(公告)日:2022-06-30
申请号:US17548859
申请日:2021-12-13
Applicant: Google LLC
Inventor: Balakrishnan Varadarajan , George Dan Toderici , Apostol Natsev , Nitin Khandelwal , Sudheendra Vijayanarasimhan , Weilong Yang , Sanketh Shetty
Abstract: A system and methodology provide for annotating videos with entities and associated probabilities of existence of the entities within video frames. A computer-implemented method identifies an entity from a plurality of entities identifying characteristics of video items. The computer-implemented method selects a set of features correlated with the entity based on a value of a feature of a plurality of features, determines a classifier for the entity using the set of features, and determines an aggregation calibration function for the entity based on the set of features. The computer-implemented method selects a video frame from a video item, where the video frame having associated features, and determines a probability of existence of the entity based on the associated features using the classifier and the aggregation calibration function.
-
公开(公告)号:US20180025228A1
公开(公告)日:2018-01-25
申请号:US15722756
申请日:2017-10-02
Applicant: Google LLC
Inventor: Balakrishnan Varadarajan , George Dan Toderici , Apostol Natsev , Nitin Khandelwal , Sudheendra Vijayanarasimhan , Weilong Yang , Sanketh Shetty
CPC classification number: G06K9/00718 , G06F16/783 , G06F16/7867 , G06K9/52 , G06K9/6201 , G06K9/6256 , G06K9/627 , H04N5/265
Abstract: A system and methodology provide for annotating videos with entities and associated probabilities of existence of the entities within video frames. A computer-implemented method identifies an entity from a plurality of entities identifying characteristics of video items. The computer-implemented method selects a set of features correlated with the entity based on a value of a feature of a plurality of features, determines a classifier for the entity using the set of features, and determines an aggregation calibration function for the entity based on the set of features. The computer-implemented method selects a video frame from a video item, where the video frame having associated features, and determines a probability of existence of the entity based on the associated features using the classifier and the aggregation calibration function.
-
公开(公告)号:US12014542B2
公开(公告)日:2024-06-18
申请号:US17120525
申请日:2020-12-14
Applicant: Google LLC
Inventor: Sanketh Shetty , Tomas Izo , Min-Hsuan Tsai , Sudheendra Vijayanarasimhan , Apostol Natsev , Sami Abu-El-Haija , George Dan Toderici , Susana Ricco , Balakrishnan Varadarajan , Nicola Muscettola , WeiHsin Gu , Weilong Yang , Nitin Khandelwal , Phuong Le
IPC: G06K9/00 , G06F16/783 , G06V20/40
CPC classification number: G06V20/41 , G06F16/7834 , G06V20/46 , G06V20/47 , G06V20/49 , G06V2201/10
Abstract: A computer-implemented method for selecting representative frames for videos is provided. The method includes receiving a video and identifying a set of features for each of the frames of the video. The features including frame-based features and semantic features. The semantic features identifying likelihoods of semantic concepts being present as content in the frames of the video. A set of video segments for the video is subsequently generated. Each video segment includes a chronological subset of frames from the video and each frame is associated with at least one of the semantic features. The method generates a score for each frame of the subset of frames for each video segment based at least on the semantic features, and selecting a representative frame for each video segment based on the scores of the frames in the video segment. The representative frame represents and summarizes the video segment.
-
公开(公告)号:US11295171B2
公开(公告)日:2022-04-05
申请号:US16657042
申请日:2019-10-18
Applicant: Google LLC
Inventor: Joonseok Lee , Balakrishnan Varadarajan , Ariel Gordon , Apostol Ivanov Natsev , Seong Jae Hwang
Abstract: A MapReduce-based training framework exploits both data parallelism and model parallelism to scale training of complex models. Particular model architectures facilitate and benefit from use of such training framework. As one example, a machine-learned model can include a shared feature extraction portion configured to receive and process a data input to produce an intermediate feature representation and a plurality of prediction heads that are configured to receive and process the intermediate feature representation to respectively produce a plurality of predictions. For example, the data input can be a video and the plurality of predictions can be a plurality of classifications for content of the video (e.g., relative to a plurality of classes).
-
公开(公告)号:US10235428B2
公开(公告)日:2019-03-19
申请号:US15195105
申请日:2016-06-28
Applicant: Google LLC
Inventor: Balakrishnan Varadarajan , Sudheendra Vijayanarasimhan , Sanketh Shetty , Nisarg Dilipkumar Kothari , Nicholas Delmonico Rizzolo
Abstract: Techniques identify time-sensitive content and present the time-sensitive content to communication devices of users interested or potentially interested in the time-sensitive content. A content management component analyzes video or audio content, and extracts information from the content and determines whether the content is time-sensitive content, such as recent news-related content, based on analysis of the content and extracted information. The content management component evaluates user-related information and the extracted information, and determines whether a user(s) is likely to be interested in the time-sensitive content based on the evaluation results. The content management component sends a notification to the communication device(s) of the user(s) in response to determining the user(s) is likely to be interested in the time-sensitive content.
-
公开(公告)号:US20180239964A1
公开(公告)日:2018-08-23
申请号:US15959858
申请日:2018-04-23
Applicant: Google LLC
Inventor: Sanketh Shetty , Tomas Izo , Min-Hsuan Tsai , Sudheendra Vijayanarasimhan , Apostol Natsev , Sami Abu-El-Haija , George Dan Toderici , Susanna Ricco , Balakrishnan Varadarajan , Nicola Muscettola , WeiHsin Gu , Weilong Yang , Nitin Khandelwal , Phuong Le
CPC classification number: G06K9/00718 , G06F16/7834 , G06K9/00744 , G06K9/00751 , G06K9/00765 , G06K2209/27
Abstract: A computer-implemented method for selecting representative frames for videos is provided. The method includes receiving a video and identifying a set of features for each of the frames of the video. The features including frame-based features and semantic features. The semantic features identifying likelihoods of semantic concepts being present as content in the frames of the video. A set of video segments for the video is subsequently generated. Each video segment includes a chronological subset of frames from the video and each frame is associated with at least one of the semantic features. The method generates a score for each frame of the subset of frames for each video segment based at least on the semantic features, and selecting a representative frame for each video segment based on the scores of the frames in the video segment. The representative frame represents and summarizes the video segment.
-
公开(公告)号:US09953222B2
公开(公告)日:2018-04-24
申请号:US14848216
申请日:2015-09-08
Applicant: Google LLC
Inventor: Sanketh Shetty , Tomas Izo , Min-Hsuan Tsai , Sudheendra Vijayanarasimhan , Apostol Natsev , Sami Abu-El-Haija , George Dan Toderici , Susanna Ricco , Balakrishnan Varadarajan , Nicola Muscettola , WeiHsin Gu , Weilong Yang , Nitin Khandelwal , Phuong Le
CPC classification number: G06K9/00718 , G06F17/30787 , G06K9/00744 , G06K9/00751 , G06K9/00765 , G06K2209/27
Abstract: A computer-implemented method for selecting representative frames for videos is provided. The method includes receiving a video and identifying a set of features for each of the frames of the video. The features including frame-based features and semantic features. The semantic features identifying likelihoods of semantic concepts being present as content in the frames of the video. A set of video segments for the video is subsequently generated. Each video segment includes a chronological subset of frames from the video and each frame is associated with at least one of the semantic features. The method generates a score for each frame of the subset of frames for each video segment based at least on the semantic features, and selecting a representative frame for each video segment based on the scores of the frames in the video segment. The representative frame represents and summarizes the video segment.
-
公开(公告)号:US20210117728A1
公开(公告)日:2021-04-22
申请号:US16657042
申请日:2019-10-18
Applicant: Google LLC
Inventor: Joonseok Lee , Balakrishnan Varadarajan , Ariel Gordon , Apostol Ivanov Natsev , Seong Jae Hwang
Abstract: A MapReduce-based training framework exploits both data parallelism and model parallelism to scale training of complex models. Particular model architectures facilitate and benefit from use of such training framework. As one example, a machine-learned model can include a shared feature extraction portion configured to receive and process a data input to produce an intermediate feature representation and a plurality of prediction heads that are configured to receive and process the intermediate feature representation to respectively produce a plurality of predictions. For example, the data input can be a video and the plurality of predictions can be a plurality of classifications for content of the video (e.g., relative to a plurality of classes).
-
公开(公告)号:US20200082173A1
公开(公告)日:2020-03-12
申请号:US16687118
申请日:2019-11-18
Applicant: Google LLC
Inventor: Balakrishnan Varadarajan , George Dan Toderici , Apostol Natsev , Nitin Khandelwal , Sudheendra Vijayanarasimhan , Weilong Yang , Sanketh Shetty
Abstract: A system and methodology provide for annotating videos with entities and associated probabilities of existence of the entities within video frames. A computer-implemented method identifies an entity from a plurality of entities identifying characteristics of video items. The computer-implemented method selects a set of features correlated with the entity based on a value of a feature of a plurality of features, determines a classifier for the entity using the set of features, and determines an aggregation calibration function for the entity based on the set of features. The computer-implemented method selects a video frame from a video item, where the video frame having associated features, and determines a probability of existence of the entity based on the associated features using the classifier and the aggregation calibration function.
-
-
-
-
-
-
-
-
-